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PRE FA CE

GTDS is documented in several parts in order to satisfy the specific require- , i

ments of different audiences. The Mathematical Theory of the Goddard Trajec- ._

l_i tory Determination System presents the derivations of all algorithms (including *, :

I_!. observation modeling equations) used in the system. This document is specifi- _,

cally directed to the analyst, i

The GTDS Design Manual I presents a comprehensive overview of GTDS capabil-

_( ities for the programmer who is totally unfamiliar with GTDS. This manual _ :)emphasizes the structure of the software system and the relationships among
the individual components of the system. For this reason, the design manual is

most suited as an introduction to GTDS for programmers who must maintain and
enhance the system. It i._Jalso helpful, however, to the analyst who must be :_

familiar w_th the syste:n at the algorithm level, i
%

The GTDS User's Guide 2 is directed to a general audience which includes aim- /t
lysts, programmers, and data technicians. Although a brief description of the ...." _

system is provided in this document, the principal contents are a description of

D the specific requirements for data card input to the system.

)
T

_'_

1Zavaletu,E. k.: 1975,GoddardTrajectoryDeterminationSystemDesignManual,Computer _ ,
_: SciencesCorporationReportCSC/5D-75/6092,March1975. i

2 Zavaleta, E.k. ondSmith, E.J.: 1975,GcddardTrajectoryDeterminationSystemUse_s _
' , Guide,ComputerSciencesCorporationReportCSC/SD-75/6005,April 1975. .i
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• ABSTRACT

_:,_:: This document presents a description of the mathematical

._:._::.;,°= theory underlying the Goddard Trajectory Determination .'t :
g_ _ System (GTDS), and includes an overview of the system .:/.
_. capabilities. The basic mathematical formulations pre-

t*: sented include mathematical descriptions of coordinate and

_,_- time systems, perturbation models, orbit propagation tech-

,)_ niques, numerical integration techniques, observation
_._ models, statistical estimation methods, and early orbit :L

_':' determination techniques.
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CHAPTER 1

)

INTRODUCTION ._

This publication presents a description of the mathematical theory for the earth/' _

- _ lunar/interplanetary Goddard Trajectory Determination System (GTDS). GTDS i

is a multipurpose computer system designed :_

: _ "to provide operational support for individual earth, lunar, alid planetary. ,_.
_ space missions and for the research and development requireme_:ts of

the various projects of the NASA/Goddard Space Flight Center scientific

_ community" (Reference 1) 1

i _ This orbit determination program includes many of the capabilities of pre- _
vious orbit determination programs developed by GSFC (References 2 and 3).

GTDS is, by its very nature, an evolutionary system. The first document des- _ t
cribing the GTDS mathematical theory (Reference 4) corresponded to a develop- _/ i

• mental version of GTDS. Since then, GTDS has evolved through several opera-
}

_ tional versions, and a Research and Development (R & D) version has been
developed to peLmlt evaluation of promising methods for operational, nonroutine, _

and highly precise orbit determination. This document corresponds approxi- _!

mately to GTDS Version 3.0, which will be implemented at GSFC in the spring _!

i of 1976. As additional capabilities are added to _..e system, this document will
_ be updated or appended.

This document is not intended to represent a set of mathematical specifications
for developing the GTDS software, but rather is _ development of the basic
mathematical formulations used in GTDS. The format varies somewhat from

; section to section, ranging from a straightforward presentation of the basic
_ equations used in the program to a tutorial approach which delves into some of

_: the underlying theory, depending on the topic under discussi_n.

,.'_ Inadditio-to describingthe basicmathematicalformulationsofthisparticular ._
_- system, this document is also intended to provide the reader with a compre-

_ hensive overview of the key physical and mathematical models required by orbit :
_: determination systems which have been developed in recent years, and the re- '
_ sults of various evaluations and improvements developed at GSFC as a result of

years of operational orbit determination experience.

T '
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An overview of GTDS is pl_sented in Chapter 2. This overview includes a i
, discussion of the programs available in GTDS, system capabilities, and sche- , :

matic diagrams of the differential correction, ephemeris generation, data sJmu- _

:_ lation, and error analysis processes, along with an indication of which chapters '
in this document contain the algorithms associated with each function.

I

Chapter 3 presents the coordinate and time systems necessary to accurately
model the spacecraft's dynamic motion and tracking observations. Chapter 4

. . details the acceleration models which constitute the Cowell equations of motion
and the variational equations. Chapter 5 details the formulation of the orbital

: equations of motion, including general perturbation and special perturbation
methods. Chapter 6 describes the numerical integration of the equations of
motion and variational equations, while Chapter 7 describes the observation
models and systematic error corrections applied to the observations. Chapter
8 contains a description of the estimators and statistical models, and Chapter 9

: presents early orbit techniques which can be used to obtain deterministically an

estimate of the vehicle state from observations.
o

Several appevdices are also included in this document. Appendix A gives func-

tional descriptions of v_rious tracking systems and preprocessing techniques. ,,
i A detailed description of time elements as used in the regularized equations of .// _

motion can be found in Appendix B, and Appendix C contains a rigorous discus-

'_ sion of the conversion of Doppler measurements to range rate. "_ppendix D pre-
sents information on typical a priori standard deviations and dynamic weighting

factors for several observation types, and Appendix E presents a derivation of
matrix identities associated with the sequential estimation process.

Finally, a glossary and an index are provided for the convenience of the reader.

• RE FERENCES ,

i. Goddard Space FlightCenter: 1970,FlmctionalRequirements forthe Lunar/

Planetary Orbit Determination Subsystem of the Goddard Trajector), Deter- ,
ruination System.

2. Velez, C. E. and Brodsky, G. P.: 1969, GEOSTAR-I, A Geopotential and
Station Position Recovery System, Goddard Space Flight Center Report
X-553-69-544, December 1969.

i
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CHAPTER 2

: GTDS OVERVIEW
: t

L_

Orbit determination in GTDS involves a complex mathematical process which
: " combines the disciplines of orbital dynamics observation modeling, and estima-

tion theory. This process is implemented through thc use of several separate

programs which are briefly described in Section 2.1.

_ I The capabilities of the system are discussed in Section 2.2. These capabil-

! ities include trajectory generation, observation modeling, and estimation tech-
: niques. Also included is a discussion of the early orbit determination process, J

which allows a crude, initial estimate of the orbit to be obtained from early track- 1-/

ing data. In addition, the orbit determination system combines capabilities which

_: i are frequently useful in mission analysis studies when executed independently; i
: GTDS has been provided with several modes of operation in order to permit i

utilization of these separate capabilities. _i/_

,_, _* The acceleration sources which are accounted for in the GTDS dynamic model :

are described in Section 2.3, while Section 2.4 discusses near real-time opera-

i_ tion and postflight processing.

2.1 GTDS PROGRAMS :!

To meet the varying demands imposed upon the system by operational sup-
port of the research and development requirements of various projects, GTDS _

..\ includes the following programs:

• Differential Correction Program

• Ephemeris Generation Program
• Ephemeris Comparison Program

• Filter Program
• • Early Orbit Determination ProTram

i • Data Simulation Program
• Error Analysis Program /?

• Data Management Program
• Permanent File Report Generation Program

L
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This document presents the mathematical models and procedures for all of these
programs except tne Permanent File Report Generation Program. A brief _ •

description of each of the programs is given in the remainder of tY.is section, i

r

2.1.1 Differential Correction Program _ ;

The primary purpose of the Differential Correction Program is to estimate the
satellite orbit and associated parameters. The estimation algorithm used in )

the Differential Correction Program is called the weighted least squares with a ,
priori algorithm or the Bayesian weighted least squares algorithm. It minimizes
the sum of the squares of the weighted residuals between actual and computed

observations, while simultaneously constraining the model parameters to satisfy |

• the a priori conditions to within a specified uncertainty. Both first- and second- i
, order statistics (i.e., the mean and covariance matrices) are determined for the _

estimated variables.

: i

; 2.1.2 Ephemeris Generation Program _ :

The function of the Ephemeris Generation Program is to compute, from prescribed -J

initial conditions, the value at a specific time of the vehicle state and, optiona!ly, the
_j state partial derivatives, h order to meet varying precision and efficiency require-

meats, several orbital theories have been provided, ranging from a first-order anal-
'_ ytic theory to a high-precision Cowell-type numerical integration. The state partial _

:, derivatives can be computed by precision nvmerical integr.qtion of variational equa- _
tions. The statepartialderivativeswith respecttothe initialstate,i.e.,thestate
transition matrix, can optionally be generated by a twc-body analytic approximation.

• \ '! 1.3 Ephemeris Comparison Program _ ,_
,%

The Ephemeris Comparison Program compares two input ephemerides. The i
comparison can be _pecified ove_" a particular arc or over the arc of overlap •

between the ephemerides. The radial, along-track, and cross-track differ-
ences are computed and outtmt.

2.1.4 Filter Program : •,

The Filter Program provides an alternative to the Differential Correction
Prograan for estimating the satellite orbit _nd associated parameters. The

f

Filter Program contains four sequential estimation algorithms called the _

2-2 _
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Extended Kalman Filter (EKF), the Modified Extended Kalman Filter (MEKF),
the Jazwinski Filter (JF), and the Modified Jazwinski Filter (_,IJF). These _
sequential filters differentially correct (update) the satellite state recursively
at each observation point processed. As a result, these methods are referred i,

to as sequential processing methods, in contrast to the batch processing method i i
used in the Differential Correction Program. Other elements of the Filter I

Program, such as model parameters and observation handling, are the same as !

in the Differentiai Correction Program.
t

2.1.5 Early Orbit Determination Program 1
]

The Early Orbit Determination Program is designed to determine approxi-
mately an initial estimate of an earth orbit when there is no a priori e_timate
available to start a differential correction process. The program provides three
methods for doing this: (1) the Gauss Method, (2) the Double r-iteration Method,
and (3) the Range and Angles Method.

_J

2.1.6 Data Simulation Program _1

The Data Simulation Program computes simulated observations of a space-

craft from specified ground tracking sites. The simulated data are generated
for specified observation intervals and sampling frequencies. The program also i
Ires the capability to simulate attitude sensor measurements. Optionally, random
and bias errors can be added to the observations. Observations can also be

t modified to account for the effects of atmospheric refraction, antenna mounterrors, tran_)onder delays, and signal propagation time delays.

2.1o7 Error Analysis Program _'

The GTDS Error Analysis Program provides the capability of analyzing the ,
_. effect of tracking error uncertainties, solve-for vector uncertainties, and con-

sider parameter uncertainties associated with a specified orbit and station-

_' dependent tracking schedule. Since the Error Analysis Program functions are
• similar to those performed in the Differential Correction and Data Simulation :

programs, these programs share common mathematical processing subroutines,
input processors, and data management options. The Error Analysis Program
features which are common to the Differential Correction and Da.ta Simulation

programs include the use of a tracking sch_;dule, selection of tracking stations,
select.ion of obsem ation measurement types, specification of observation standard

deviations and weights, and specification of the a priori state co,,ariance matrix.

2-3
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_ Construction of ti:e normal matrix and the use o_ the consider mode to account

:. for the effect of con_ider parameter statistics on the covariance matrix of the
*- solve-for vector are performed in the same manner as in the Differential Cor- i
, reetion Program.

2.1.8, Data Management Program

The primary functmn of the Data Ma_,agement Program is to create working
files of data to be used by other pro_,rar.s in _TDS.

-_ 2.2 SYSTEM CAPABILITIES

' The key elements of the differential correction process are shown schematically ?

J in Fi_,ure 2-1. The chapters of this document which contain algorithms asso-
ciated with each function are indicated in this and s':cceediug figures. Both ,,
the batch and sequential modes for estimating the orbital _tatv are shown. The

_ _ use of common modules to perform key functions is basic to the GTDS structure.
For this reason, algorithms derived in this document are applicable to many _- .
areas of GTDS. As sho_n in Figure 2-1, an estimate of the orbital state at an

initial epoch must first be specified _tpriori from an independent source. 41
Observation measurements _o be pr,_cessed are retrieved fz om an observation ,_

file, and an orbit generator determi_es the satellite trajectory (position and

velocity) at times corresponding to t:m measurement sampling times. _n addi- •
; tion, at each sampling time estimate_ of the observation measurements a-e

computed as a 'mnction of the satellite trajectory.

* _ma batch mcde, this process is performed sequentially from data time to data ,

_ time, and constitutes the inner loop of _he process (see Figure 2-1). In addi- ".
,\ tion to the computed measurements, p_ rtial derivatives of the measurements :

with respect to the epoch state must be computed in the inner loop for _. ,e in the
: statistical m,gression process. Upon ccmpletion of the inner loop processing at

the measure,_ent times, _e epoch state is differentially corrected by means of

a Bayesian _eighted least square_ meth,,d. The updated epoch state is then '_sed ,_

to perform another inner loop iteration. Repeated iteration of the inner loop, cul-
, minating each time with a differential co _rection to the epoch state, constitutes the

._ outer loop. /,s the iterations proceed, tim epoch state converges to the Baye,sian .' _
' _elghted leas_ squares sotutton to the non,linear orbit determination problem. ,

In the sequential filter mode, a single loop is used to perform these measurement
: calculatio_s and partial deri_ attve calcul_tloa_, and the state and covariance _;

matrices _.re updated at'tot each measure_ aent to obtain the final state. It sl,ou td

2-4

- ?

-_ i w _,- _

1976017203-024





f,-

i* . ............... _" ,, , , m m . ,,,,,
i

_ be noted tlmt Figure 2-1 depicts functional relationships and not the _ctual GTDS
_" structure. Within the GTDS structure, the filter mode logic is separate from the _

_ batchmod.,_ logic. ._
';

2.2.1 Trajectory Generation ' :

_. Trajectory generation is performed through integration of the orbital equ;
_, - tionb of motion in the Ephemeris Generation Program. Ephemeris generation "
: can be performed as a standalone function as shown in Figure 2-2. In addition, .

_ trajectory generation is a key element cf the differential correction: process
_* shown in Figure2-1. The analyticand numericaltheoriesavailablein GTDS '_
: are discussed in this section.

The ,_rbi_al equations of motion can be expressed most shnply it. terms of
the rec.*a_gular components of the acceleration vector acting on the satellite. :

' )_ Considerable research lu s focused on the problem of transforh,ing th_ orbita]
; equations of motion into a more desirable form. The general approach is to _

reformulate t_m equations in terms of a new set of orbital elements, to solve the ,,
* _- transformed set of equat:'ons for the value of the orbital elements at the desired .,/

time, and they to transform these elements to the desired element set (e.g.,

Cartesianor Keplerlan). _ ,_

In the general perturbations appro_.ck, _his reformulation o._the equations
of motion yields a set of equations which can be integrated ar_lytically. The
chief advantage of such trajectory generation methods is their high efficiency. _.
However, reformulation of the orbital equations such that an analytic solution

is possible usually requires some approximations. For example, in Brouwer

theory, which is a general perturbations method in GTD'_, the pert_rbction model t ;'
includes only the effects of a point mass earth and the lvw-order zonal harmonics _'_

in the gravitational potential. For the generation of satellite trajectories for _

-. which theseare thedominant perturbations,Brouwer theoryissufficiently
accurate.

&

Solution of the equations c f motion via numerical integration is classified as "*
a special perturbations method. The numerical integration techniques avail-
able in GTDS are discussedindeL_ilin Chapter6. In thehigh-precisionspeciat :_
perturb._ionsapproach,theperturbingacceleratmnwhich acts on timsatellite " ":

is modeled a_ accuratelyas possible.The variousperturbationmodels and , _..
numerical integrationtechniqueswhich v.reavailableinGTDS are discussedin
Chapters 4 sad 6, respectively. The chief advantage of the special perturbations 2

approach is high accuracy; however, these methods are considerably more ex- _'

pensive, in terms ofcompute, time, than the g_reral perturbation methods. _

2-6
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: N,,merieal integration of the orbital equations expressed in terms of the Cartesian
_ component5 of the acceleration vector acting on the satellite is called the Cowell

Method. In both the Variation of Parameters (VOP) and htermed_ate Orbit ap-
proaches, the Cowell equations of motion are reformulated to obtain equations

_ that are better conditioned for numerical integration. In the VOP approach, a i
transformation i,,"made to a set of orbital elements which provide aa exact solu-
tio,a to the two-body problem. The orbital equations expressed in terms of these

: eiemeuts incluue variations in orbital elements arising only from the perturbing
" • acceleration vector, i.e., the point mass effects or the earth are integrated ex-
_ actly. In _ases where inaccurate numerical integratiot._ of the point mass gravi-
_ tational effect of the earth is a significant error soucce (e. g., geosynchro_ous1

orbits), VOP methods are superior to the Cowell Method.

In the Iutermediate Orbit approach, aa approximate solution obtained by an
! analytic theory is used as a reference solution, and the time rate-of-change of :

the difference between the true solution and this reference s6tution is numerically
' integrated to _b_in an improved solution. Intermediate Orbit methods can be :

deve!oped for any analytic theory; however, only two Intermediate Orbit me_ods
have been considered for implementation in GTDS. The first is the Brouwer

..: _ _ Intermediate Orbit with only first-order short-period terms due to J2 or with _'/'
the first-order short- and long-period terms and second-order secular terms

due t_ J2. The second method is a similar orbit de-¢e]oped using Poincare var- _ ]
: iables so that orbits of low ec_enfficity and low inclination can be considered.

The Intermediate Orbit approach should be optima! mr an orbit for which numer-

_, ic_l inaccuracies in the integration of the elemen_ rates arising from two-body

or J2 effects are a major error source. The major drawback of both the VOP '
and I_mrmediate @rbit approaches is the computational cost associated with the i

_*_tuired transformation cf the orbital eleme_ts to and from the Cartesian state i
vector, i .

; . Fixed-step numer;cal integration is inefficient for the computation of highly
"_. eccentric orbits (i.e., eccentricity greater than 0.1) if time is used as the inde- "

pendent variable. For such applications, an automatic mechanism is required _,

to force a small stepsize in the region of larger perturbations and a large step-
size in the region of small perturbations. A variable-stepsize option is avail-

: able in GTDS; h_wever, stepsize changes are costly and frequently introduce
errors. Therefore, an alternative analytic stepsize control me,_h,mism is also

available. In this procedure, the equation_ of motion are refcrmulated in terms J
of a new independent variable s instead of time t, such that

ds _--1 dt (2-1)
r n

2-8
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"_. where r is file magnitude of the satellite's position vector. Th_ effect of this I
,i

._ transformation is to "regularize" the independent variable so that fixed steps i• in s correspond to variable steps in t that are smaller when r is small (i.e., i :_

where the perturbations are usually larger) and larger when r is large, i f

Several regularized trajectory generation methods are currently implemented ! :
- in GTDS. The Time-Regularized Cowell Method was developed by reformu- !

"_ lating the Cowell orbital equations in terms of the independent varmble s (with } :

n = 3/2 as the default value) in Equation (2-1). The Kustaanheimo-Stiefel (KS) i -

"_: Method is a regularized VOP formulation whicL uses the eccentric anoumly
!

as the independent variable (n = 1 in Equation (2-1)). The Delaunay-Similar 1
(DS) Method is a regulprized VOP _ormulation in which the true anomaly is ;

: used as the independent variable (n = 2 in Equatlon (2-1)). This form of ann- }
iytic stepslze control works well when the forces vary inversely with distance _,

.,;_! from the central body. The DS approach has the strongest regularization, fol-
lowed by the Time-Re_larized Cowell, and then the KS Method. The chief dis- i
advantage of the regularized methods is that they require numerical integration

of an additional equation, the time equation. For orbits with low eccentrici_ i
(i.e., less than 0.1), analytic stapsize control is not needed and the error intro.- _

_,., duced by numerical integration of the time equation may eve1, degrade the solution. _*>" :.

_ I Special perturbation methods are also included ia GTDS for generation of a mean : ;
:_, trajectory, representing only the long-term evolution of the orbit. Numer-
-_,-' ical averaging is one such long-term orbit prediction method in GTDS. The , •

numerical a:,eraging method is a VOP approach in which the short-periodic per- : ,
r/ turbing effects are numerically averaged out of the equations of motion, leaving _

-,_(_ only the long-term motion to be integratecl. The cost of each integration step is .,
_:;: high, but is usually far outweighed by th_ large stepsizes that are possible i_ the

._: integration of tbe averaged dynamics. The averaged prediction model is most i :_
•:_:: efficient for applications where knowledge of the short-period perturbations is
.v. not required (e.g., mission analysis or prediction of tracking station acquisition i t

_, times) or where the cost of numerically integrating the precision equations of i

_ motion is prohibitively high (e.g.: determination of gravitational models from ,
_, large amounts of tracking data). : ,,

_?: 2.2.£ Observation Modehng ,i '

'_: Observation measurements provide the means by which the estimate of the or- } '

bit of a spacecraft is compared with its true flight. The orbit estimate is ex-
_.., pressed in terms of the conceptual abstractions of position, velocity, and time, _ ,_.

...._'_ whereas the observations may involve measurements of some physical property ! F

:_'_ of electromagnetic wave propagations between the tracking station and the ,
i {_:_,:_ _
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spacecraft. The propagation measurements aze selected such that they can be
easily related (via theoretical postulates) to the spacecraft state. This process
of analytically relating the measurement quantities to the spacecraft state is o

referred to as "observation modeling" and is vitally important to the accuracy __
' _ of the orbit estimate.

]

.- The observation models J_ GTDS ar_ employed in the differential correction :.
and data simulation processes, and, as shown in Figure 2-1, the algorithms are

':' "i presented in Chapter 7. The relationship cf these models to the GTDS Data
Simulation Program is shown in Figure 2-3.

- 2.2.2.1 Observation Types

GTDS provides for the processing of the following types of observations:

; 7 • Goddard Range and Range-Ra_ (GRARR) radar c'_'R (including the _
antenna X and Y gimbal angles)

_, • C-Band radar range, azimuth, and elevation data ,,

• Minitrack interferometer direction cosine data *

: • Unified S-Band (USB) radar propagation time delay, Doppler shift,
and X and Y gimbal angle data _'J

• Satellite-to-Satellite Tracldng (SST) propagation time delay and Doppler i _
shift data "

i 2.2.2.2 Data Preprocessing

! Before introduction into GTDS, data from the GRARR, C-Band, and Minitrack .

: ',_. systems undergo considerable preprocessing to convert frora measured quan-
• tities to estimates of the spacecraft state components relative to the track- :

ing station. The preprocessix;g of observation data is normally done by means
of a compt:ter program completely independent of GTD% Raw data are converted

! from the form received from the tracking stations to forms suitable for storage
: in the data base and for use in GTDS. Wild points are edited out, calibration ,:
; corrections are applied to eliminate known instrumentation errors, ambiguities ,

_n the data measurement and/or recording are resolved, conversions are made ,_
lrom the measurement units to units which are more phys;cally meaningful or

: convenient, and the data are optionally smoothed and possibly compacted if large
amounts of raw data are measured,

i .; r _

• 2-10 ,_
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More specifically, this preprocessing includes:

_ • Two-way propagation time delay conTersion to approximate one-way

(instantaneous) relative ranges

• Doppler-plus-bias cycle count conversion to approximate one-way

(instantaneous) relative range rate

• C-Band radar gimbal angle conversion to line-of-sight azimuth and
" elevation angles

• Minitrack interferometer frac*_onal phase count augn_entation with
whole cycle counts to reRolve ambiguities, and conversion into line-
of-sight direction cosines relative to t.he station e st-west and north-

: south baselines

The modeling within GTDS is thus greatly simplified. It is only necessary

: ,] to compute the apprepriate quantity from the relative position vector between
i the tracking station and the spacecraft in local tangent coordinates.

_., The minimal preprocessing of USB and SST data consists of simple reformatting /"
,- and c_nversion of reference frequency cycle counts to time intervals. "Y

2.2.2.3 Observation Models

! The GTDS observation modeling requires rigorous iterative solut'.ons for the
two-way USB propagation paths and for the round-trip propagation path from
the ground radar to the synchronous relay satellite to the target satellite and

back for SST. These finite speed propagation paths are computed as straight
lines in inertml coordinates. A round-trip circuit represents the modeling of
the "range" time delay measurement, and two round-trip circuits are necessary

'_. t_ model the Doppler measurem_.uts in terms of the round-trip light time differ-
ence. The USB Doppler measurement is implemented as a nondestruct count,
whereas th_ 8ST measurement is implemented in the form of e;ther a destruct

i or a nondestruct count.

All of these observation models assume vacuum propagation of the electro-

magnetic wave. Corrections to the actual observations are computed for the
refraction effects due to the presence of the atmosphere {the nondispersive

s

troposphere and the dispersive ionosphere). In addition, other corrections to
the observations are estimated for tracking antenna location error_ and space-
craft transponder delay characteristio.s. I

t

- i
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, The modeling of the observations also includes the calculation of the partial

..7 _ "

derivatives with respect to the solve-for and consider variables. Variations of i :
-; all the variables except two, the tracking station locations and the tracking data _ :

_ _
-_ biases, result in changes in the estimate of the spacecraft orbit. For the re- i :

maining variables, the partial derivatives of the observations are computed in ! :t
terms of variations of the spacecraft state at the time of the tracking signal

_:_ turnaround. This variation with respect to the local state is then related back _

_: to the epoch time via the appropriate elements of the state transition matrix, t .

_" This matrix maps changes inthe initialstatevectorcomponents intochanges

" in spacecraft state components at any subsequent time of interest. Elements lof this state transition matrix are calculated by numerical integration of the

variational equations associated with the trajectory, i :

_ 2.2.3 Estimation Techniques i

"_ As statedin Section2.i.i, the primary estimationalgorithmavailablein GTDS
.;;;| is cvlled the weighted least squares with a priori or Bayesian weighted least

_i squaresalgorithm(seeChapter 8). This algorithmminimizes the sum ofthe . ,,i#S

"_ squaresof theweightedresidualsbetween actualand computed observations, ._.. _,
_._ whilesimultaneouslyconstrainingthestateto satisfyan a prioristateto with-

_- _ in _ specified uncertainty. The iterative estimation process differentiallv
_ correctstheestimatedvariablesand ultimatelydeterminestheweightedleast

squares solution.Both first-and second-orderstatistics(i.e. themean and

_. covariancematrices)are determinedfortheestimatedvariables.

_: A second method available in GTDS is the Extended Kalman Filter (EKF) s,_-

_; quentialestimator(seeChapter 8). Severalfeatureshave been incorporated
_, to prevent divergence due to model ecrors in the dynamics or measurements.
,_,:, These vary from artifically constraining the covariance gain to using adaptive
•_' techniques.

,_. Two classesof variablescan be accommodated inthe statisticalcomputations. ,
_:SI The firstclass,calledsolve-forvariables,includesmodel parameters whose
..ii_,_ valuesare known withlimitedcertaintyand are beingestimated. The second

:__, class,'calledconsidervariables,includesmodel parameters which are not
_}_ beingestimated,butwhose uncertaintywillaffectthe statisticsofthe solve-

for variables. Model parameters v hich can be included in either the solve-for
_: or consider classes include the following. _ ,

,,_- • Positionand velocitycomponents of thespacecraftinCartesian,

_, Keplerian, or spherical coordinates

• Atmospheric drag parameters

_t,% D
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! • Solar radiation pressure parameter

• Gravitational potential coefficients

• Thrust parameters

• Tracking station locations

• Observation biases

Specified subsets of the spacecraft position a_d velocity components can option-
ally be estimated in mean of 1950. 0 o_"true of date inertial Cartesian coord-

: inates, classical orbital elements, _,pherical coordinates, or Definitive Orbit

Determination System (DODS) type elements (Reference 1).

GTDS can also operate in an error analysis mode, wherein only the covariance

matrix of the solve-for variables is differentially corrected and propagated

• y through the process. The error analysis process, shown in Figure 2-4, relies
_ heavily on functions in the differential correction process, such as the computa-

tion of observations and the update of the normal matrix. The solve-for variables
are unchanged from their a priori specified values. In this mode, only the un- /J
certainties of the tracking data, not the data, are required. This mode permits "_

simulation and analysis of the uncertainties resvlting from the estimation process

prior to mission operations. _

2.2.4 Early Orbit Determination

Occasionally, a priori state value estimates of sufficient accuracy to yield con-
vergence of the iterative process are unavailable, as when mission aL_omalies
occur and preflight e_timates of the state are no longer valid. For such cases,
GTDS has the capability of rapidly determining approximations of the spacecraft's
position and velocity, from a limited amount of early tracking data. These approx-
imations provide s_rter values for the differential correction process.

Three early orbit approximation methods, described in Chapter 9, are available
in GTDS. These methods are: (1) the Gauss Method, (2) the Double r-Iteration
Method, and (3) the Range and Angles Method. The Gauss and Double r-Iteration

Methods use three sets of radar gimbal angle observations to determine the state /
vector. The Range and Angles Method uses multiple sets of radar range and s

gimhal angle data to obtain the state vector.

$
2-14
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2.2.5 Optional Modes of Operation _i

/

Each of the programs which make up GTDS can be utilized in a number of dif-
, ferent modes, depending on the needs of the user.

I "_

, The Ephemeris Generation Program can be used to propagate a vehicle state i

from a given epoch to some specified time. This program is useful for several
purposes: :_

!! • To generate a spacecraft ephemeris report on the online printer

• To generate a spacecraft ephemeris tape in either the ORBIT, EPEEM, •
or ORB1 (for Cowell integration only) format

• To perform vehicle lifetime studies

• To generate state partial derivatives over a given time span

i The Differential Correction Program employs a Bayesian weighted least squares _,
: algorithm to estimate vehicle state, various force model parameters, and non-

: ; dynamic parameters such as station locations and observation biases. The :
Differential Correction Program uses the Ephemeris Generation Program with /_'_
any of the available orbit theories to satisfy integration requirements. The Dtf- "_
ferential Correction Program can also be used to: '_

• Determine a definitive orbit during near real-time operational mission
support or during postflight support

• Determine better estimates of the harmonic coefficients, the coefficient
of drag, the solar radiation constant, etc.

• Save the results of a differential correction in the form of updated ele- _
ments on an elements file or an orbit history on an ORB1, EPHEM, or
ORBIT File _ -_

The Data Simulation Program is designed to compute simulated observations _:

at a specified frequency for given sets of tracking stations and observation in- ,:!
tervals. The program can create observational daia in either the DODS or

GTDS format. Simulated data are useful for controlled tests which require=
that the data conform to certain criteria (e.g., particu|ar force model, biases,
or corrections for particular portions of the orbit). The Data Simulation Pro-

gram aP"ws the observation tracking schedule to be specified in one of the four / i
followi_ orms:

• Periodic detailed schedule

• Spacecraft 1_ ss ,_
• Function of special events
• Function of times on actual observation tape

2-16
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0
The Data Simulation Program also provides for random and bias errors in

the _,omputed observations as well as the effects of atmospheric refraction,
antenna mount errors, transponder delays, and light time. it uses the same
modeling algorithms employed by the Differential Correction Program and da'ta
from the GTDS ORBIT File to compute observations. .,

i

The Error Analysis Program provides the capability to perform anPlysis of

tracking errors for an arbitrary orbit, given the stati,_n-dependent tracking seb_-
: dule and other scheduling information. The program provideP, a variety of sta- _
: tistical output reports, including the following:

• The epoch covariance matrix and correlation coefficients associated +

with P.n entir_ tracking span, and standard deviations ass-)ciated with
elements and solve-for parameters in various coordinate systems.

+ Sensitivity information about the consider parameters and the noise
effect on the epoch state is also available.

+ • The user may optionally request that the epoch covariauce matrix and
sensitivity matrix be mapped _:orequested times. Trajectory standard
deviations and the root sum sqaare of position and velocity sigmas are

+ provided at each mapping time. At the last mapping time, the covariance /
matrix and associated correlation coefficients are also printed. "_

d

B The Error Analysis Program uses the Data Simulation Program tracking
_ schedule_ the differential correction matrix accumulation, and data from the

_t GTDS ORBIT File to construct the requ.red statistical matrices.
_:_

_:: 2.3 SPACECRAFT DYNAMICS

In order to accommodate the varying reouirements at GSFC in near-earth,

:. lunar, and interplanetary mission analysis, the GTDS dynamic model includes

_+ the following ._cceleration bou,'ces:

*' • N-Body Point Mass Gravitational Acceleratk, ns - These include all
• +

,i_! planets in the so!ar system, the sun, and the earthVs moon.

_:+ • Nonspherical Gravitational Accelerations - The nonspherical gravi-
.:: tational acceleration model allows the inclusion of up to a 21 x 21

_ potential field for the earth and moon. The _cceleration due to the
:_+ mutual nonsphecical gravitational attraction of the earth and moon
_¢_ can also be included. +

_+i. • Aerodynamic Force Accelerations - The aerodynamic force acceler-
_ model for the earth includes a dynamic atmosphere model which

'+_° D' 2-17 ,
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-_, accounts for gariations in the solar flux on the earth's upper atmosphere.

• A modified Harris-Priester model and Robert's analytical formulation of
the Jacchia (1971) mcclel are available.

_ _ • Solar Radiation Accelerations - The solar radiation model includes

shadov_ng and v_riations with distance from the sun. i
_r

_ • Attitude ContTol Syste_._ Accelerations - A generalized model is included
to account for the small accelerations resulting from the use of attitude _,

_ controlsystem_. ",

_ • Thrusting Maneuver Accelerations - A gene, ralized model is included to _,

, account for the accelerations resulting from propulsive maneuvers. :

,. • Replacement Accelerations- Provisionis made forreplacingallnon-
potential accelerations with the total acceleration measured by onboard
accelerometers. /

! -_"i The referen_.,ecoordinatesysten_fortheequationsofmotion isoptionally
; either the mean equator and equinox of 1950.0 or a true of date system at a •

_t specified epoch. Coordinate transformations acc,ount for precession, nutation,
• and polar motion of the earth's spin axis. Planetary positions are determined ,=// _.

- from a peripheral ephemeris file containing Chebyshev polynomial coefficients

derived from JPL ephe,neris data. ,_j ,

The program isprovidedwitha "flightsectioning"capability,wherein thecom-
pletetrajectoryarc can be partitionedintomultiplesubarcs. The dynamic

model options, numerical integration characteristics, and output quantities and
frequency can be suitably tailored for each subarc. The criteria for crossover
from one subarc to the next are based on either Lime or spatial conditions which
can be specified for each subarc.

,, The state transition matrix, required by th_ estimator algorithm, is obtained "

by numerically integrating the variational equations. A Cowell predictor-
corrector numerical inte_oTation algorithm is used to integrate the second order
equations of motion and associated variational equations. Automatic or semi-
automatic error control is provided by adjusting the integration stepsize by _,
using a time-regu!__r,.'zatio_ process.

Various options are provided in the dynamic models and n_meric_l integra- ,'
; tionall,rithmstogivetheversatilitytoaccommodate bothhigh-speednear , !

real-time applications and precision postflight applications.

2.-18
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_ 2.4 NEAR REAL-TIME OPERATION AND P_, IrLtGHT PROCESSING

-_. To p,'t, vidc vperational support, GTDS includes a near real-time capability with
_ interactive graphics report and control facilities. The interactive capabilities

allow the user to edit individual data point, based on grapaicaI displays of _heir ,
residuals; to modify iterative convergence critcria; to modify editing criteria

ff

_:. such as data time spans, processing, rates, data types, etc. ; or even to change
_., modes during a run.
,t

.... Near real-t_m._ operation usually necessi_.ates a compromise in computational

_ precis!ca compared with tb.at generally achieved during postflight processing.
_. Several options are included for this purpose. These options permit more rapid

_:_, computation without seriously jeopardizing precision, and effect orbit generator
._ type selection, model approximation, and control over the number of var_ab!es
_ being estimated or considered.

\
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g.-- CHAPTER 3

_" COORDINATE AND TIME SYSTEMS
t

V _
The orbit deter mt_n_ion _roccss m_,_!ves measurements that are taken and forces

"_' that are modeled in several different space and time coordinate systems, This

._ chapter defines these systems and gives the necessary transformations between
_- them, i

f

_: 3.1 GENERAL COMMENTS AND DEF_ITIONS

i _-_ The GTDS coordinate systems consist of the fundamental astronomical reference
_, systems and other systems that were originally borrowed from aeronautics or

l originated from special requirements of space exploration. Requirements for !

different coordinate systems occur from the following three sources:

• input d_ta ,,
".,. • internal computations _ /_ ,<i

• ou_ut requirements,

For example, the input ephemerides of the planets are heliocentric and refer to
• the mean equator and equinox of !950.0.* The input observational data are in a
,:: tepocentric c_ordinate system. The integration is done in either geocentric,
¢.

: selenocentr.ic, planetocentric, or heliocentric rectangular coordinates referred
to the mean equator and equinox of 1950.0 or of a specified epoch. The force

- model includes t_._'ms referred to a coordinate system th_ is fixed in the rotat-

_ ing earth and terms that are referred to the moon and planets, The output ru-
_: quirements may be osculating elements with respect to the earth, moon, or

p ..... c s"_+_,_ are defined and discussed later in!- planets. These s _-_ .... _: ....
-- this chapter.

Sinoe several different coordinate systems are used in GTDS, tlv_.se systems

-, must be defined ar,:l provision must be made for transforming from ,,_e coordinate

( sysLem to anoth_,'. A coordinate system is defined by specifying the origin of the
:_ coordinates, a reference plume, and a principal direction in the reference plane.

This specification of the reference plane includes an identification of the"positive,

, or north, or outward sense along the normal to the plane. The reference plane
is an equivalence class of mutually parallel planes. For example, the equator is
defhmd to be the plane normal to the earth's axis of rotation. Usually, thie plane
contains the earth's center of mass; however, in selenocentric equatorial coordinates,

Thebeginningof the Besseliansolaryear is denotedby thenotation.Oafter theyear. The nota-
' tion 1950.0correspondsto January0.d923,1._50ephemeristime.-.For a detailedexplanatior_,seeRef-

-i D erencel, pages22, 30,and59.
3-1
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the paralle! _lane contains the moon's center of mass. To avoid any such diffi- " " ]
culty, the celestial sphere of infinite radius is introduced, and the celestial
equator is *.he intersection of the equatorial plant wi_h the celestial sphere.

This is another way of identifying the equivalence eiasses of paraUel planes and
: parallel lines. The reference plane often refers to that member of the equiva-

lence class that contains the origin of coordLuates. The corresponding statement
holds for the equivalence of parallel lines in defining a principal direction.

:!

• The designations of coordinate systems, according to the location of the origin,
are given in the following table:

' Origin of Coordinates Designation of System

The observer Topocentric
: The center of the earth Geocentric
: The center of the moon Selenocentric

The center of the sun Heliocentric
; The center of m_ss Baryeentric

The following reference planes are used: /r

: • The Horizon. Without further designation, the horizon is the plane
tangent to the oblate ellipsoid earth model _t a specified point on the

surface. The outward normal is directed away from the earth model.
• For topocentric coordinates, the reference plane is the geographic
/ horizon corresponding to the point on the earth model whose normal

passes through the observer.

• The Equator. The equator is the earth's equator, unless otherwise speci-
fied. This is the plane normal to the earthVs axis of rotation, and north

,, is in the direcuon of the angular velocity vector of the rotation, also
" called the celestial pole. The moon's equator is defined in a

corresponding way.

w The Plane of an Orbit. The plane of an orbit is defined by two-body
motion and north is the direction of the angular "momentum. In the prob-
lem of more than two bodies, the o._culating plane enrrespouds to the
state at a given epoch or the mean plane that has the periodic perturba-
tions removed.

• The Ecliptic: The eci_ptic is the e_rth-sun orbital plane and is _ special
case of the plane of an orb!t. North is the direction of the systemVs angu-
lar momentum, o lso called the ecliptic pole.

n

3-2
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The principal direction is usually specified by giving the sense along the inter-
section of the reference p!_ne with some other plane. The other plane may be
a mer"Jian plank, an equatorial plane, or another orbital plane. A meridian

plane is defined as any plane that contains the axis of rotation of one of the _i
principal gravitating bodies. Commonly used meridians of the earth and moon
which are used to determine principal directions are: _ ,

• The Greenwich or Prime Meridian. The Greenwich meridian is the !

earthts meridian plane that passes through the former Royal Observatory _ :

at Greenwich, England. I

• The Lunar Prime Meridian. The lunar prime meridian is the moonts _

meridian plane that passes through the mean center of the apparent lunar
disk (that point on the lunar surface that would be intersected by the
earth-moon line, were the moon to be at the mean ascending node when

this node coincided with either the mean perigee or the mean apogee). !

• The Local Meridian. Tl:e local meridian is the earth's or moonVs

meridian plane that passes through the observer's position. This con-

cept is not meaningful when the observer is situated on the axis of _ 7 t
rotation.

Other principal directions frequently used in astronomy are: !

! • The Vernal Equinox or Equinox. The equinox is the fundamehtal principal

direction used in astronomy. It is defined as the intersection of the
ecliptic and the earth's equator with the positive sense being from the ?

' earth to the sun as the sun crosses the equator from south to north.

.:: • The Ascending Node. The ascending node is the intersection of an orbital

"If plane and the reference plane with the positive sense being from the origin !,

toward the orbiting body as it crosses the reference plane from the south

i: to the north. Thus, the vernal equinox is an ascending node.

3.2 COORDINATE SYSTEM DESCRIPTIONS

3.2.1 Body-Centered Equatorial Inertial (Geocentric, Selenocentric, or _
_**_" Planetocentric)

" 0 ¢

_ Origin: Center of the reference body

_ Reference Plane: Equatorial plane of earth at epoch
,. Principal Direction: Vernal equinox of epoch

_:=: 3-3
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Figure 3-1. Body-Centered Inertial
Coordinate System

f Rectangular Cartesian Coordinates (See Fibmre 3-I):
;

x-axis _ the prLucipal direction

y-axis _ the normal to the x and z axes to form a right-handed system /
z-axis _ the normal to the equatorial plane of epoch in the direction of the _

angular momentum vector.

Within the folJowing formulation, R, X, _, and Z designate the position vector and
Cartesian coordinates referred to the mean equator and equinox of 1950.0. Simi _

laxly, rz, xz, Yz, and z z designate the position vector and Cartesi__n _oordinates
referred to the mean equator and equinox of epoch and r, x, y, and z designate

the position vector and Cartesian coordin__tes referred to the true equator and
equinox of epoch. _'

. SphericalPolarCoordinates:
'\

r _ radial distance from the origin to the point being measured

c__ rightascensionmeasured eastfrom theverualequinox,tan-I (y/x) i

declination measured north from the equator, sin -_ (z/r)

3.2.2 Body-Centered Rotating

Origin: Center of the reference body i

Reference Plane: Equatorial plane of reference body a_ epoch

PrincipalDirection: Interseccionofthe prime meridian withthe equator
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Figure 3-2. Body-Centered Rotating !_

CoordinateSystem '_

Rectangular Cartesian Coordinates (see Figttre 3-2):

Xb-aXis "_ the principal direction ; ;

Yb- axis _- the normal to the x b and zb axes to form a right-handed system ,,

zb -axis _ the normal to the equatorial pbme of epoch in the direction of the /j_.
north celestial pole .>/ ,.

S Spherical Polar Coordinates: i

r _ radial distance from the origin to the point being located

';_ii, /_ -_ longitude angle measured east from the prime meridian, ;,:: tan-1 (yb/X b) _-
' _' _ geocentric latitude angle measured north from tbe equator, ,,

_" Sin- 1 (Z b/r b)

_:i- Geodetic Coordinates _ ""_

_, h _ height measured normal to local body surface to the point i

•_'_ being located

\ _ longitude angle described above ,,
' _ _ geodetic latitude angle measured north from tim equatorial _ "_
_i_- plane to the vector normal to the ellipsoidal body surface

'_,. passing through the point being located (see Figure 3-2) _ ',:
_L_ , -:

3.2.3 Local Plane System

i: Origin: Center of reference body (see Fxgure 3-3)
Reference Plane: Plane containing _, the geocentric position vector

_-- topointP,andthez-axis _,
_. Principal Direction: Geocentme poaition vector to point P _'

"_ 3-5
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:_ Figure 3-3. Local Plane System

Rectangular Cartesian Coordinates (see Figure 3-3)

• x 1p-axis _- directed along geocentric position vector to point 1_ .
} YI_ -axis _ the axis displaced from the inertial y-axis by the originWs right :_

ascension and lying in the equatorial plane ,_
i S ;

zip -axis _ the north pointed axis lying in the reference plane normal to -J _
the principal direction.

F

• f

Spherical V_.locity Coordinates:

V _- the velocity vector's magnitude ( I r I>
A _- the azimuth angle measured clockwise from the Z_p-aXis to the "

:- projection of the velocity vector onto the Ylp -z 1_ plane,

_ the flight path angle measured from the xl_ -axis to the '.
velocity vector. :

"\ ?.,2,4 Topocentric Local Tangent (East/North/Up)

Origin: Observer (Lopocentric)
Reference Plane: Plane t_ngent to the ellipsoidal earth m_el at

the observer .T

Principal Direction: Vector in reference plane pointed north

l_ectangular C_rtesian Coordinates (See Figure 3-4):

x it -axis -,_ the axis lying in the reference plane that points east
Y _t -axis _. the principal direction
z it -axt:_ _ th_ apward direction along the geodetic vertical

3-6
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Figure3-4. TopocentricCoordinates

1

Spherical Position Coordinates: i

(The origin coincides with the tracking station and p is directed at satellite) i

p _- the station to spacecraft range I
A _ the azimuth angle measured clockwise from the principal direction to t #

to the projection of the position vector in the reference plane }

E _ the elevation angle measuredfromthe reference plane to the station- ito-spacecraft position vector l

3.2,5 Orbit Plane !

Origin: Center of the reference body ?Reference Plane: The plane of the orbit
_ Priucipal Direction: The radius vector from the origin to the satellite

-_ xop-axis _ the principal direction _ ,
vop -axis _ in the orbital plane 90 degrees ahead of the satellite in the sense _

"_r of the motion !

Zop-axis - the direction along the vector ¥ × r _ ,

,' The following two alternative orbit plane systems are defined. Both have the i

!: same origin and reference plane as the basic system described above.

!_< • The geplerian system, denoted by x, y_ and z,,, has its x_-axis
6 _

" (principal direction) directed towards tl_e perifocus of the_satellite
,_ orbit (see Figures 3-5 and 3-6).

3-7

1976017203-046



_ z

: Zop , Zp, Zep A

" Orbit Plane
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Vernal Equinox •

: Xep
Origin of Longitudes

Figure3-5. Orbit Plane Coordinates

':" • The equinoctialsystem, denotedby Xep,Yep , and zep,has itsx_p-axis ,./
: (principaldirection)directedtowardsthe "originoflongitudes."The

"originof longitudes"liesinthe planeof theorbitand isdisplacedby
: theangle f'Lfrom the ascendingnode N, where f_istherightascension - '
' of the ascending node. UnR vectors along the coordinate directions

x _p, y_p and z _p are deno_;ed by f, g and w respectively.

3.2.6 Orbital Elements

Three types of orbital coordinates are presented below wtt_ch can be used to
describe closed orbits. Two sets of equinoctial and Herrick elements are defined

" such thattheelements and thecorrespondingequationso_,motion ar,_ non- '
_!_ " singular for inclinations of both 0 degrees (direct set) and 180 degrees (retro-

grade set).

Keplerian Elements (see Figures 3-5 and 3-6):

a _ the semimajor axis
e _ the eccentricity specifying the elongation of the orbital conic section
i _ _hc i_clination specifying the orientation of the satellitets orbital plane

with respect to the equator of the central body
_ _ the right ascension of the ascending node, i.e., the angle measured

eastward along the equator between the vernal equinox and the point
where the satellite crosses the equator traveling in a northerly
direction

3-8
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Figure3"6. OrbitalParameters

_-the argument of perigee, i.e., angle between the ascending node and the
perifocal point measured positive with increasing mean anomaly

M _ the mean anomaly, i.e., the sum of the mean anomaly at epoch and the
product of the mean motion and the elapsed time from epoch. ._

3Equinoctial Elements (see Figure.-5): _,_

a the semimajor axis i

h _- the projection of the vector _ on the y_p -axis : _;
k _ the projection of the vector e on the x -axis _ ._

ep

p _ the projection of the vector N on the y_p -axis
q _ the projection of the vector N on the x p-axis _
;__ the mean longitude

where

_ eccentricity vector pointing in the direction of the Xp-aXis (perifocus) _ ,
and having a magnii_lde equal to the eccentricity, e

_ nodal vector pointing in the direction of the ascending node and having _ ._
a magnitude equal to 1 '":

1

where i denotes the orbital inclination r.nd j = +1 for direct orbits, and _ ,_-
j = -1 for retrograde orbits

Herrick Elements: !

e the eccen, tricity vector (defined above) expressed in inertial Cartesian
coordinates

]
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Figure3-7. Vehicle-FixedCoordinates

_ _ the angular momentum vector divided by J_-_, where _ is the gra'_tational
constant, I.e.

ot

: _ "f×r

,, C
_ The vector _ is expressed in inertial Cartes-:au coordiP_tes.

n _ theKepler mean motion _-_i
_ _ _ themean longitude ._

(Note: Only six of the eight scalar components above are independent. Single .1

components ofthevectors_ and _ are dependentupon theremaining sixelements.)

: 3.2.7 Vehiclc- Fixed

: Origin: Center-of-gravity of the spacecraft
Reference Plane: Plane containingthe longitudinaland verticalaxes

defined by the spacecraft designer
: _- Principal Direction: Longitudinal axis directed toward front of spacecraft

i ,

, RectangularCartesianCoordinates(seeFigure 3-7) _

xcaxis _ thelongitudinal(roll)axisalongprincipaldirection ,:
! y -axls _ the lateral(pitch)axis

z-axis _ the vertical (yaw) axis
J

3.3 SPECIFIC TRANSFORMATIONS

The spacecr_R's state vector at a given time is obtained by integrating the equa-
tions of motion. The equations of motion equate the acceleration of the vehicle
to tl,_ sum of the various accelerations acting on the vehicle, and are valid only

3-10
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8 "'in an inertia] reference 5"ame. However, _he principal acceleration sources
which act on the vehicle, i.e., gTavity and aer_'_ynamic drag, are most easily !
expressed in terms of a body-f_[ed system. T_e inertial position and velocity i

must therefore be transformed to body-fixed coordinates for use in computing _
the gravity and drag acceleratzons. These accelerations, expressed in terms of
body-fixed axes, must then be transformed to the inertial coordinate system for _ t
use in the numerical integration process. The tracking measurement computa-

tionB, used in the estimation process, also require body-fixed position and
velocit_ coordinates of the spacecraft. Thus, one of the most basic transforma-

tions in GTDS is that between the inertial coordinate system and the bed-r-fixed
system. The following eoordir_te systems are also used in GTDS to express
spacecraft position, velocity a_./__r acceleration for various purposes.

• _ody-Cen_.red Equatorial Inertial: This system, when "frozen" at
specified da_e, provides the basic coordinates for expressing the equations
of mnfion derived from Newton's laws. In GTDS the 1950.0 reference

date is used to loc._.t_ the planets, moon, and spacecraft.

• Bgdy-Centered Rot_.ting: This system is used to characterize the gravi-
J

tational field and the a_mospheric properties of the body° /

• Local Plane: This system is used to orient the spacecraft velocity

vector.

• Topocentric Local Tangent: This system is ased to characterize ground
based radar tracking observations of the spacecraft.

• Orbit Plane: This system is used to characterize the spacecraft orbital
position and motion.

• Vehicle-Fixed: This system is used to characterize propulsive and "
',, aerodynamic forces acting on the spacecraft.

In the following subsections, the transformation between the mean equator and
equinox of 1950.0 inertial coordinate system and the body-fixed system is pre-
sented. This is followed by descriptions of transformations relating the inertial

coordinates to the various other coordinate systems used in GTDS.

3.3.1 1950.0 Inertial to True of Date

The equinox i_ defined as the intersection of the plane._ of the earth's equator
and the ecliptic, The equator _s defined as being normal! to the earth's polar axis.

, The motion of the equinox is due to the combined motions of the two planes, the

_i _ _quator and the eclipt_c_ thg.t define it. The motion of the celestial pole or of3-11
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the equator is due to the gravitational attraction of the sun and moon on the :__ '
: earth's eqaatorial bulge_ It consist_ of two components: hm2so]ar precession :;

and nntation (References 1, 2, 3). Lunisolar precession is the smooth long-

period westward motion of the _quator:s mean pole aro, md the ecliptic pole and _
• has an amplitude of approximately 23.5 degrees and a period of approxiL_ately "_

26,000 years. Nutation is a relatively short-period motion that carries the _
actual (or true) pole arc_md the me,on pole in a somewhat irregular curve with =,

_ an amplitude of approximately 9 seconds of arc and a period of approximately ;

. 18.6 years. The motion of the ecliptic (Le., themean plane of the earth's orbit)
is due to the plane's t gravitational attraction on the earth and consists of a slow
rotation of the e _ ptic. Thi,q motion is known as planetary precession and :_

: consis*,_ of an _,_t-ward movement of the equinox of approximately 12 seconds
of arc a century an& a decrease of the obliquity of the ecliptic, the angle between
the ecliptic and the earthts equator, of approximately 47 seconds of arc a
century. In astr,Jnomical work the precessional motiol_ of the equator and _

ecliptic, called general precession, is considered separately from the nutational
motion. Thus the "mea_" equator and equinox are determined by neglecting nu-
tation. The "_ue" equator _nd equinox can then be obtained by correcting the
mean equator and equinox for w,ttatie, n. _,:

3.3.1.1 1950.0 lnet_ial to Mean of Dat,s

The 1950.0 inertial coordinates are transformed into the mean equator and '
equinox of date by correcting only for precession. This is done by the following
three rotations (see Figure 3-8).

R, (77/2 - _0) _ the rotation al-mt the Z-axis that rotates the X-ax:s to the
ascending node of the mean equator of date _

R ( 0p ) _ the romtlon of the 1950.0 e_mtoria! plane iuto the mean 'X _

equatorial plane of date about an axis that coincides -_ith ,
', the ascending node of the mean equator of dat_ on the

1950.0 equatorial plane _

R, (_/2 + _p) _ the rotation about the z_-axis that rotates the x_-a.xis to _

the descending node vf the mean equator of 1950.0 _ ,

The orthogonal transformations are defined as follows: _ ,
1

cos a _in a 0 1 0 0

?

R z (a) = s_na cos a (a) = cos a sin (3-1) ,

0 0 - s_n a cos ;

3-12
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MeanEquator i ]
Z of Date -_

ZE,_

2

VE ,, :

Mean Equator . ___=_=___ Y :

of 1950.0 t .

xE !

! Figure 3-8. Preces_;onA_,,ales ._

The angles _o' 0p, and _p are given by (Reference 4)

_i _o = 2304_'9969T + 0_'302000T 2 + 0_'01808T 3 (3-2a) s_
r,J

..... _ 6_ .: 2004:'2980T - 0_'425936T 2 - 0_'04160T 3 (3-2b)• P U U U

:_ _:p = 2304'.'9969T+ 1'.'092999T 2 + 0_'019200T 3 (3-2c)

_/ where

Tu_ is measured in Julian centuries (of 36525 days) from 1950.0.

i
._ The total rotation matrix may be expressed as

:¢

t

4 A = R,(-90 ° - ¢p_ Rx(Op) R,(90° - _o) = (a_i}" (3-3) '

4

"_ Denoting the 1950.0 coordinst,:,s by R and the mean equator and equtuox of date i

by rE, we have _
.;

4,: 1- = A_ (3-.4) ;

i

:tq'" $ ," 3-13
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_: 1 where the elements of A are ./ ]

,? { all = - sin _o sin _p + cos _o cos _p cos Op :

_ ._ =- _os ro._i. _ - ++in_o_os_,+cos_
'" i ':

:: a13 = - cos _p sin Op

)- ..

")i a21 = sin _o cos _.._+ cos _o sin _p cos Op -

: _22: co_ _+o_o_L - sin _osin _,, _os e,_ (3-5)

++ a23 = - sin _p sin 8p
-r

as I = C O S ?20 S [ n _p ,;

_' ? a32 : -- sin _o sill C/ +.
' 2 P ,'t

? _ a33 = cos 0p. j
J r

: The time derivative of A is assumed to be negligible; therefore, the velocity
t

coordinates are transformed as follows

r_. : AR. .. (3-6) ,_

\

3.3.1.9. Mean of Date+to True of Date

"' The transformation from the mean equator and equinox oi date to the true of _

date system involves correcting for the nutation e_fect. Nutation is measured
as cyclic changes in the obliquity+ the angle between the equatorial plane and the '_

ecliptic, and the longitude of the equt_ox. These changes in obliquity. Sc, and . ,'_
longitude,5_J,,are assumed known. They are inputto GTDS by fittingpolynomials

throughthe JPL ephemeris data (Reference5)as describedinSection3,6, .

To compute the tra_formation, the mean obliquity is first determined (Refer-

ence 1)

"_= 23.°452294- .°130125, 10-_T_.- _.lo4× 10-ST_ _ _503x 10-6"1'_ (3-'/)

3-Z4 R_I_,ODUCIB_LITY OP T]-I]_
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2

g. where ]

g
Ts _ the time in Julian centuries (36525 Julian days) elapsed from 1900 :Jan 0d 12 h ET (JD 2415020.0) to specified date.

t.
_. Then, defining

SE _ the difference between the true and the mean obliquity

_ _ -- _ • __ -_ the true obliquity measured from the true equator to the ecliptic

__ __ _ the n-:tation in longitude, which is the true longitude of date of
_i: the mean equinox of date
?

_ the rotation from the mean equator and equinox of date to the true equator and
equinox is _ven by the following three rotation: (see Figure 3-9).

R_(_) _ the rotation about the x-axis through the mean obliquity to the
_ _c..v_c of dat_ .

J

R,(- _'5) "- the rotation about the ecliptic pole, through the nutation in "J .::,

, _. lon_tude ..
_' R (-_) _ "he rotation about the x-axis through the true obliquity to the .
_ true equator of date

where It and R are given by Equation (3-1).

z z Ecliptic

k '

/_. _ YE M,e_n Equator

"i
TrueFquator ._ ;

x l_

x E

_'_ t:igure 3-9. Nutation Angles

"_ _ 3-15
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The totalrotationmatrix may be expressed as } /

N = Rx(-_) Rz(--8_b) Rx(_) = {nij). (3-8)

#

Denoting the true of date coordinates by ¥, we have

f : r_.,-z (3-9)

where the elements of N are

nll : cos _._v

n12 = - sin 8_b cos

p
1

n13 = - sin /3_,sinT ":I" ::

n21 : sin 8_ cos

: n22 : cos 8g,cos _cos g + sin_sing (3-10)

n2a= cos S_bcos'_sing-sinecosT :,

n31= sin 8_b sin'g ', '\

n39= cos 3_b sin g cos -g - cos "g sin g ,

naa= cos 8_bsin_sing+cos'_cos-&

_ J 2,

The time derivative of N is assumed to be negligible. Therefore the velocity "
i

coordinates axe transformed as fol!ows

-r= Nrz. (3-11) _'

m
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3.3.1.3 Summary

The transformation matrix from inertial mean of 1950.0 to true of date co- .:

ordinates is given by

I ;

Y : CR (3-12) .

where

c = o, 0p 13-13) '

i The elements of the precession matrix, A, are given in Equation (3-5), _ad the

elements of the nutation matrix, N, are given in Equation (3-10). In GTDS the
C-matrix is synthesized during preprocessing computations using precession
emgles obtained by means of Equations (3-2), and nutation angles obtained from
an ephemeris tape provided by the Jet Propulsion Laboratory. The elements of
C are stored on the SLP (Solar/Lunar/Planetary) file, _s described in Section

-_ 3.6, for retrieval and use during program execution. /_ i

•_ GTDS has also been provided with the optional capability to solve the equations
._ of motion in a true of "reference date" coordinate system where the reference
!i_ date is specified. The orthogonal transformation in Equation (3-12) involves

_! two times, the date of the true coordinates denoted by t, and the epoch of the

_!. mean inertial system, denoted by 1950.0. Therefor% Equation (3-12) can be
_ written

i_ ¥(t) = C(t, 1950.0) R or R= cT(t, 1950.0) T(t) (3-14)

_: where the superscript T denotes transpose.

,_ Specifying the reference date by t* then i

_ ¥(t °) = C(t °, 1950.0) R or R = Cr(t °, 1950.0") ¥(t °) (3-1s)

_: The transformation from the true of reference date to true of date coordinates

_: is obtained from Equations (3-14) and (3-15) to be

3-17

1976017203-056



Ii 7

-(

•" ¥(t) = C(t, 1950.0) Cr(t *, 1950.0) ¥(t') (3-16)

This equa_on permits problems to be solved using a true of reference date ._
coordinate system as the inertial frame, but requires only the precession/ ,

nutation matrix, C(t, 1950.0), ,_dch is available on the SLP files.

Note 1./rotthe transfor.aation matrix in Equation (3-16) is the identity matrix
when t -- t*. GTDS utilizes this property and neglects precession and nutation
when a true of reference date option is specified. This requires that the problem
t_me, spauned by t_ must be relatively short ,'andin the proximity of the reference

date, t*.

3_.2 True of Date to Body-Fixed

j The transformation that relates the true of d_/_e coordinates to the body-fixed _
coordinates acc_xmts for two separate effects. The first relates the true vernal

equinox to the prime meridian of the rotating ear_h by means of the angle a g,
_. _ the true of date right ascension of Greenwich (see Figure 3-10). The 3econd ../
_. effect_ called polar motion, accounts for the fact that the pole of the body-fixed "

axis, Zb, does not coincide with the bodyts spin axis, z, the pole of the true of
' date geocentric axes. The first of these effects transforms the true of date (

coordinates to pseudo body-fLxed coordinates, x_ 9 Y_, z _. These pseudo co-l
ordinates would be precisely the body-fixed coordinates Xb, Yb' Zb' if Zb = Zb,
that is, ff polar motion were onutted.

3.3.2.1 True of Dar_ to Pseudo i_ody-Fixed

The transformation from the true of date to the pseudo body-fixed coordinates
A?,

cons:sts of a rotation about the true of date z-axis through the true right ascension

of Greenwich _g (see Figure 3-10), yielding

Z

_l Greenwich ' i:

eridia I

J

?:

i .
Xb _

,_ Figure3-10. GreenwichSiderealT;me
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$
sin a m 0q t

B1 = RT(ag) = sin a m cos a_ 0 (3-17)

0 0 1 _
l

The true of date right ascension of Greenwich, a, is measured easterly from
the true vernal equinox to Greenwich. A related quantity is the Greenwich hour
angle, also called the true Greenwich sidereal time, which is measured westerly
in the plane of the equator from Greenwich to the true "vernal equinox. Thus,

although their definitions differ, the right ascension of Greenwich, a, and the
-_ Greenwich sidereal time and hour angle are equal in magnitude. The true

_, Greenwich sidereal time is obtained from the mean Greenwich sidereal time

(Reference 2)

i C_GM= UT1 + 6h 38 m 45_836 + 8640184_542T + 0_0929T_ (3-18)_ by applying the correction
J

,5

i: a = + AH (3-19)g C_GM
+,

_ _ where
f

5H = S_ cos(-_ + _e) (3-20)

: The nutation in longitude, 5_b, and obliquity, _e, is discussed in Section 3.3.1.2.
The times UT1 and T in Equation (2-18) are

u

UT1 = Greenwich universal time measured from midnight (epoch) to time t.

UT1 is positive for t after midnight and negative for t before midnight.

T _ the number of Julian centuries elapsed from 12 hours UT1 January 0,
1900 (JD = 2415020.0) to the UT1 time of epoch*

' ' The true of date coordinates transform into the pseudo body-fixed coordinates
as follows

Tb , = BI-F' (3-21)

*UTI andhenceT me knownonlybyobservationof thepolarmotionandrotationof the Earth.u

GTDSusesempiricalpolynomialsto computethe differenceA.1-UT1. SinceA.1 is known,UTI
canthenbedetermined.

" _ 3-19
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Differentiation _ields the velocity tran,gformztion I J

" _b' = _lr + ]3_'r (3-22)

where

l
- sin ag cos c_g O_

: COS CL - sin c_ cL
1 _ g _ (3-23)

• 0 0

and where _ is considered constant.
g

,' 3.3.2.2 Pseudo Body-Fixed to Body-Fixed (Reference 3)

The earthts axis of figure (i.e., principal moment of inertia) is not coincident t
with the spin axis and it moves with respect to the latter causing the polar motion ,,J
effect. The path of the spin axis on the earthts surface is "semi-regular" but
unpredictable due to random shifts in the earthls crust, etc. Therefore, motion

of the spin axis pole is given with respect to the pole at _ome established epoch. [

The pole at the established epoch is referred to as the adopted pole (PA) and
I

corresponds to the pole of the body fixed axes, xb , Yu, Zu, while the present
position of the spin axis pole is referred to as the true pole (PT)"

The adopted pole used in GTDS corresponds to the mean pole of 1903.0 which
is consistent with that used by the International Polar Motion Service. Due to
the small size of the polar motion correction (it takes place in squares of _ 30
meters), the polar region of the earth may be considered a plane. A geocentric

. rectangular coordinate syotem is established with the z b-axis passing through P^,

the x_,-axis parallel to the xb-axis and directed along the Greene.rich meridian,
and the yp -axis parallel to the negatice Yb-axis and directed along the meridian

of 90 ° west (see Figure 3-11). The coordinates of the instan .taneous pole, PT '
are meastLred in terms of x_ and y components using units of seconds of arc.

p p

(The coordinates xp and yp are periodically measured by the International Polar
Motion Service and supplied to interested users by the U. S. Naval Observatory.)

In order to derive the e.xpressions for the effects of xp and yp on a pointts
latitude and longitude, these two quantities are shown in relation to a regular

right-handed orthogonal-rectangular coordinate system whose z i, axis passes
through PA and whose x b - z_ plane passes through Greenwich. In this system,

the adopted longitude of a point _A is measured positive in an eastward direction
from x b. The following notation zs used:

J_

: 3-20
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Figure 3-11. Polor Motion Schematic

h^ _ the adopted longitude
¢^ _ the adopted latitude j

,/

h T the instantaneous longitude with respect to (Xb, Yb, Zb) '' :"I I

CT _ the instantaneous latitude with respect to (Xb, Yb' Z_)

}i _ A¢ _'_ T -_^, the difference between adopted and true latitude: Ah _ h T - hA, the difference between adopted and true longitude

" Let _v and _T be measured in the pseudo body-fixed coordinate system (x_, y_,

Zb') whose z _ axis passes through PT and whose xu axis lies in the z b - x b
_ meridian, displaced from x b by the angle x,. The vector in the (xb, Yb, Zb) and

_, (_, y_, z_) systems ,nay be written

_ x b cos _^ cos hA

_{ Yb = r b cos ¢,^ sin h (3-24)

}!4' z ' sin CA
J)

_' and

X COS q5T COS _

_,_"' y : r b Cos sin h.f (,,3-25),

:;_r s i n q)T
% -- b - -.

_:,'

4;",'
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I

i

: The two systems are related by

• = Rr(x).RI%) ; , !

; -¢

where R x is given iu Equation (3-1) and R is
; Y

a 0 - sin ,

Ry(a) = 1 0 (3-27) "

Isin a 0 cos ::

The resulting transformation is _

cos x sin xp sin yp sin x cos -

"_b = 0 COS yp - sin yp g'. (3-28) :

-sinxp cos xp sin yp COS Xp COS yp

i

The error made by neglecting the polar moticn transformation defined by Equa-
tion (3-28) increases linearly with I{bt. A worst-case, order-of-magnitude in- i_ ,_

',, dicatton of this error is given in Figure 3-12.

The figure also shows the band of uncertain67 in lr u - r_ I as a result of a :'--2- ;
meter uncert_uty tn the measurement of the polar motion coordinates, x and

p

yp.

Since Xp and yp are small, all cosine terms are equated to unity, all sine terms ;
equated to their angles, and all products neglected. Thus the transformation 0e- , _ '

fined by Equation (3-28) simplifies to

_ _I1 0 x 1

- = B2r b !
rb 0 1 _yp ¥_ -, (3-29)

_Xp Yp I . :.w"
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Earth Synchronous Lunar

2000 Surface Satellites Distance

; 1000 -- , ,_

_ :

_ j 2

I

so _.

_J

20 I 1 ;
_ 5 10 50 100 500

I_b! _ 1000 kilometers

Figure 3-12. Polar Motion Errors i_

_ The worst-case error made by using the simplified transformation matrix is ::•_ insignificant. For example, at lunar distances the error amounts to less than

a centimeter. _ _

In order to obtain the relationships between )_T' )_A' _^' and _r' the follo_g
formulas may be used

_T - _A -- A_ = Xp cos kA - Yp sin ;_ (3-30) _:

_'T- _A : _ : tan _bA(Xpsin_'A _ Yp cc_'_kA). (3-31)

The Goddard Trajectory Determination Program use_ the simplified trz_sforma-

i!I_ _ tion matrix defined in Equation (3-29). The Instantaneous coordinates of the pole, ;

Xp and yp, are ot_atned by ev_luattng predefined cubic polynomials at the given
date.
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l

;r

. Xp = all + ai2T + aiaT2 + ai4T3
2

._ (3-32)
?

• yp = ai5 + ai6T + aiTT2 t ai8T3
: I

where

x -_ x-polar coordinate, seconds of arcJ p

: * yp ~ y-polar coordinate, seconds of arc
T ~ number of d_.ys from the beginning of the time span covered by the

-.
polynomial, e.g., T = ], 2, .... For a given modified Julian date, MJD

T = MJD - MJDi (3-33)

_ where MJDi is the tabular modified Julian date which bounds theinterval from below, i.e.,

J

MJD i _<MJD < MJD i + 1 13-34) ->-"/

The coefficients a ij are given in Table 3-1 next to modified Julian dates (rood
2,430,000) defining the time spans for which the coefficients zre applicable.
These coefficients and associated _ime spans were determined by least-squares
fitting of cubic polynomials to published daily polar motion data. The time spans
were determined by constraining the maximum deviatio,, (between the data and
polynomial) to be less than 0.01 seconds of arc.

The table begins on January 1, 1958, and is updated periodically as current i
data from the U. S., Naval Observatory becomes available. The last row of co-
efficients in the table can be used to obtain extrapolated values of the polar

'" motion coordinates for a short time in the future.

3.3.2.3 Summary

The complete transformation between the true of date coordinate system and the

body-fixed system is given by

i

_b = B2(x' Yp) Bl(ag) T = BY (3-35)

where B = B 2 B_ with B 1given in Equation (3-17) and B2 in Equation (3-29).

m
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Table 3-1

Polar Moticn Coefficients

G,'egorlan Modified [ X- Polar Coordinate Y- Polar Coorchnate o#

Date duliaz_ [ i

Ltat_ I ,1,1 ] a 2 a_ ..t 4 a,, a.t ' ,_,7 ,t _

01-01-58 tJ204 -0.1970_D DO '-0.17397D-02 0.1(,'792D-o4 0.5653711-07 -0.54697D-01 0.19t891)-02 0JJ7555D-04 -0.434441)-06 i

04-08-58 6291 -0.13488D 00 [ 0.35695D-02 0.4786213-05 -0.472,tSD-n7 6.37_01D 00 0.299351)-02 -{).21848[)-04 -0.36390D-07 I

08-28-58 6443 0.32567D O0[ 0.46332D-02 -0._1859D-04 0,177,_/D-0_, 0.27:23D 0{I -0.31136D-02 -0.33444D-04 0.2X654D-06 I

11-27-58 3534 0.22133D 00 r-o.63734D-02 0.1t_865D 04 0,61318D-07 -0.77337111101 -0.70363D-03 (J 17730D-04 0.463711)-08

03-24-59 6651 -0.17C08D 0O fL25367D-03 0.973881)-05 0.27892D-07 0._,1864D-0! 0.41445D-02 -0.47648D-05 -0.75084D-07 _;

99-09-59 6820 0.27773D 00 i 0.2t,658D-02 -0.42458F-04 0.103801)-06 0.284601) 00 -0,14203D-02 -0.10745D-04 0.60890D-07 !.
04-24-60 7048 -0.85171D-0"] 1-0.144591)-02 0.27010D-04 -0.70824D-07 0,12111D 00 0._12t6D-02 0.63648D-05 -0.39237D-07

12-21-60 728 o 0.14300D 00 I 0.15746D-03 -0.36863T)-05 -0.835911)-09 0.223491) 0O -0.60969D-03 -0.10727D-04 0.61740D-07

07-05 • 6! 7485 0.29412D-01 :-0.7262113-03 0.82974_-06 0.97399D-08 0.145271) 06 0.20816D-02 -0. 19450D-04 0.60625D-07

12-31-61 7664 -0.30430D-01 -0.12198D-02, 0.21743l)-04 0.12057D-08 0.23238D 00 0.10180D-02 0.39270D-05 -0.71242I)-07 '!

0_-07-62 7761 0.50266D-01 0.63817D-03 0.1095(D-05 -0.35036D-07 0.28686D 00 0,27306D-03 -0.20762D-04 0.75204D-07

10-23-62 7960 -0.36791D-01 -0.32778D-02 0.1518.LD-04 0.28784D-07 0.10175D 0O 0.15825I)-02 0.159371)-04 -0.85935D-07

04-01-63 8120 -0.63_Q,6D-01 0.28084D-02 0.1487iD.,-04 -0.15351D--06 0.41375D 00 0.17397i)-02 -0.,:.4163D--04 0.12548D-06
09-03-63 8275 0.17377D 00 -0.24358D-02 -0.201_D-04 0.11286D-06 0.10492D 00 -0.35173I)-02 0.39067D-04 -0.73909D-07 •

04-05-64 8490 -0.16637D 00 0.29283D-02 -0.640._911-07 0.36926D-97 0.41S61D 00 q.29369D.-02 -0.3842913-04 0.956761)-07

07-21-64 8597 0.17993D 00 0.2694313-02 -0.326(,0D-04 0.384771)--07 0.39884D 06 -0.25030D-02 -0.17647D-04 0.12983D-06 :_,

12-13-64 8742 0,23795D-01 -0.3828413-02 0.425 }2D-05 0.8629813-07 0 62704D-01 -0.13271D-02 0.39303D-04 -0.10542D-0_ ! _

04-25-65 8875 -0,20109D 00 0.22095D-03 0..t5378D-64 -0.19490[)-06 0.32931D 00 0.389141)-02 -0.293821)-04 0.12412D-07

09-17-65 9020 0.17408D 00 0.20348D-02 -0.37214P-04 0.947911)-07 0.329321) 00 -0.28118D-02 -0.19542D-05 0.564431)-07

03-21-66 9205 -0.10598D 0O -0.29328D-02 O.37LI6D-04 -0.9106tD-07 0.91055D-01 0.230651)-02 0.42261111105 -0.49763D-07

09-29-66 9397 0.49071D-01 0.3]195D-02 -0.'_i_84D-04 0.979131)-07 0.3513ID O0 -0.543441)-03 -0.23239|)-0,. I 0.12731D-06 "_,

02-09-51 9630 0.52058D-01 I-0.18656D-02 0.137071)-04 -0.28021D-07 0.163651) 00 -0.12220I)-03 0.67445D-05 -0.244371)-07

o5-28-67 9761 -0.73559D-02 I-0.40375D-03 'O.5(173D-t_5 -0.12649D-07 0.i9478D OO 0.825811)--03 0.85707D-Off -0.194731)-07

04-10-68 9956 0.13935D-01 II 0.4_635D-04 0.1 t791l)-04 -0.891431)-07 0.26201D O0 -0.21272D-0'1 -0.12867[1-04 [).647640-07 _ i"
09-17-68 10116 0.30342D-01 [ 0.11158D-02 -0.6J582D-0,1 0.3355213-06 0.15523D 00 n0_7_ _

_ _ 7 _ 4 _ l_ _5
6.224421)-66

I

12-25-68 10215 -0.15879D 00 * 0.77670D-03 0.16188D-04 -0.94824D-07 0.230231) 00 0.21761D-02 -0.1156011-04 0.2847811-07 _'J /_¢
04-30-69 10341 0.19964D-01 0.7788fiD-0_" 0.L95541)-04 -0,245011)-06 0.370121) 00 0.11803D-03 '-o.18108D-04 0,669531)-08 _ ,

08-28-69 10461 0.115581) 00 I 0.22065[)-0:: 0.214871)-04 -0.154071)-06 0.136041) 00 -0.103021)-02 0.66636D-05 0.158051)-07
01-02-70 10588 -0.1156H) O0 1_0.411351)-02 0.u{_q5fll)-04 -0.44({7511-60 0.131C71) 00 9.386341)-02 0.9£753D 06 -0.118531)-.0(;

04-21-70 10697 -0.9839011-01 0.168071)-02 0.32544[)-0.t -0.2116111-00 0.40,115I) 00 0.2q255D-02 -0.514601)-04 0.137"_,,D-06 _"

_; 09-02-70 10831 0.20618D 00 -0.102151)-(_3 -0.373731)-05 -6.30_17I)-3{, 0.20856l) 00 -0.2_568D-02 -9..t945_l)--05 0.19[)30l)-0h
11-15-70 10905 0.60462[)-01 -0.22317D-02 -0.12960I)-01 0.10771D-06 0.5127_[)-01 -0.271591)-{{2 0.523851)--04 -0.],197811-06

05-02-71 11073 -0.17706D C,0 0.105421)-02 0.17511|)-04 0.'102571)-06 0.40436I) 00 0.27322D-02 o.146_01)-04 -0.41955l)-06 '_

07-10-71 11112 0.69938D.-0_ 0.464891)-02 -0.122931)-0t -0.103661)-06 0,515:181) 00 -0,1785fi[)-02 -0.231301)-04 6.9806211-07
11-15-71 1.1270 0.171831) 00 -0.1 171 _.02 -0.285{)0I)-01 0.14516D-06 0.119801) 00 -U.I36q�I)-02 -0.1_9161)-04 0.179531)-63 _" -:

03-30-72 11106 -0.181511) 06 ,-0.13425D-62 0.372021)-04 -0.917(,31,-07 0.1642aD 00 _.37311D-62 -0.95525I)-05 -0.240(_3[)-07 ,_

68-21-72 11550 0.120,161) O0 0.107191)-02 _-0.190861)--05 -(L340121)-07 0. t40181) 00 I -O 232981)-O2 0.197331)-05 -0.378831)-68 _
12-24-72 11675 6,160,171) 00 -0 1383411-02 -0.45410l)-06 -0.125311)-07 0.1(.h751) 001-6.,t53t41)-02 6.17651l)-04 -0.152181)-6h

04-26-73 11798 -0.107131) 00 -L'._1736I,,.-03 0.19310l)-04 _-0.,19338l)-07 0.1fi691D 0O I 0.2, t38l)-02 -[}.,1_73711-05 -0. 93690D-08 _¢
01-04-74 12051 0,12471D 00 -0 37'160l)-03 - L1438-tl)-04 0.681511)-07 0.242571) OOJ-0.21067l)-02 0.210961)-04 -0.5963_1)-07

07-25-74 12253 0.140091)- O1 0.23a381)-{13 O 517121)-05 -0.152q2D-06 0.21{)80D 00 0,530q71)-03 -(I.258611)-04 [}.3225,tl)-06 )

09-10--74 12300 -0.22600D-01 0.33157D-16 -6.28_71)-]7 0.32670D-19 0.25641D O0[-0.!197251)-(L_ 0.4h9q2D-64 -0 11840D-05

10-09-74 12329 6.21593[1-01 [-0.15_65l_62 0.12341D-04 -0.196661)-07 0.2J(;391) (H) I 0 _1515l)-f, _l-q ,,_,71,dD-_ 0.2_59!H)-67 , •

12501 0.99919D'02 1 0.19124D-02 -0.24541111101 0.16709D-06 0.311S4D Ot)1 :, ,?10_!l)-!,J-0.4013_1!-04 j " 2371n,,-0,,
03-30-75

I •
i
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The time derivative of B 2 is negligible; therefore, the veloczry is transformed as
follows I,

+ •

rb : BaBlr + B2BI¥ (3-36) ":

l

where ]31isgivenhy Equation(3-23).

3.3.3 SelenocentricTrue ofDate to Selenographie(ReferencesI, 3, 4 and 6)

.. The lunar landmarkr, and gravitational potential are referenced to a lunar-centered

:: body-fixed (selenographic) _oordinate system. Similar to the earth's geographic
system, the selenographic system reference plane is Lhv lunar equator which

contains the x t- and Ys-aXes. The Zb-a_ is directed towards the lunar axis of
rotation.

/ The moon's mean rotation is describ_,d by the following three e_irical laws
: of Cassini.

• (1) The mean axis of rotation is "_cl in the moon, perpendic,_lar to the mean , "
' lunar equator; the mea_ period of rotation is equal to the mean sidereal !//

period of revohltJon of the moon around the earth. I

(2i. The mean lunar equator intersects the eclip_,c of date at a constan_ in- I

clination, IM,for which the currently accepted value is 1°32'.1.

(3) The mean lunar equator, the ecliptic, and the lunar orbit plane meet
the line of nodes of the lunar orbit, with the descending node of the
equator at the ascending node of the orbit. The angle i, between the
lunar orbit plane and the ecliptic, is a constant (the currently accepted

value is 5o8') as is the angle i + IMbetween the mean hmar equator
and the lunar orbit plane. The ecliptic is seen to always lie between

\ the mean lunar equator and the lunar orbit plane.

The oscillation of the actual rotational motion about the mean rotation is called

the physical libration. The physical libration consists of small pendulous
oscillations, never exceeding a#pro_mately 0°.04 (in selenographic latitude and
longitude), and are caused by deformations in Lhe moon's figure.

As a result of the first law of Cassini, the principal direction of the selenggraphic
system (x_-axis direction) defines the lunar prime meridian &nd has been
chosen so that it is, on the average, directed towards the center of the earth disc.
The Xb-aXiS passes through the Sinus Medii (Central Bay) on the lunar surface.
Specifically, the xb-axis is defined to be coincident with the vector pointing from
the center of the moon to the center of the earth, if the moo_ were at the mean

ascending node when the node coincided wi+h either mean perigee or mean apogee.
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North

' I_ Selenographic Zecliptic z ijPole .

Zb z _ Yb
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Yb

'_ Lunar :

_/ Lunar equator ; i

.._|;,tor f ..

Xb Tot.,ard
Earth ',

X,Xecliptic orbit :
(a) (b)

Figure 3-13. _=,lenocentric/Selenographic GeomeTry

To transform from the inertial system to the selenographic system, a lunar-

centered (selenocentric) coordinate system is defined which is parallel to the
earth-centered Cartesian true of date system. The selenographic system /

(Xb' Yb' Zb) is oriented relative to the selenocentric system (x, y, z) by the "_

_ Euler angles _', i s, _nd A shownin Figures 3-13a and 3-14. The transformation
•1_ between the selenocentric and selenographic systems is

_ Yb = MT (3-37)

' where M : R=(A) Rx(is) R,(_') (3-38)
i

with R and R= given by Equation (3-1). The elements of M are

J

roll : cos A cos D' - sin A sin D.'cos i s

mz2 = cos A sin _' + sin Acos _' cos i " i

mz3 = sin A sin i
(3-39)

m21 = - sin A cos _}0_ ,_-os A sin D' cos i s

m22 - sin A sin _' + cos A cos _)' cos _ i

cos A sin i i,1_23 :

,_ 3-27
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t
: t

' t
; I

!- '"31 - :_ill []" :_ill i s J }

, IT132 = - COS _# sil-I i s

-- COS i ,;
, m33 s _

Because of the relationship bet_-een the moon's mean position and the orien¢ation _

of the lunar se!eT,o_raphic coordinates, the deter_dnatiov of _he Euler angles
_', i s , and A necessar_lj involves the moon's mean orbit.

t

Figure 3-13b can be used to relate orbital motion to the lunar centered axes

system. It shows the "ecliptic" plane (Xc 1:p:, _ - Y_I i_ti _ ) which passes
through the center of the moon and is parallel to the e_liptic. The lunar equator

, and orbit planes are shown intersecting m a line on the "ecliptic" plane. The
xb-axis is shown in the lunar equator. In this moon relative coordinate frame,
the earth cmt be considered as orbiting the moon (the origin) in exactly the same

: orbit as the moon orbits the earth except that longitude .angles measured in the
orbit plane must be reduced by 180 degrees, rot example, when the earth is at ,
the descending node and the x b-axis points towards N tm Figure 3-13b, the moon
is, in reality, at it_ ascending node, 180 degrees advanced from N. Thel_fore, the
longitude of the ascending node _ and the mean longitade _ must be reduced

by 180 degrees when used inthemoon relative,frame. The _elenographic_xes
can be orientedtothe selenocentricaxes by mean_ ofthe followingfourangles:

_.,the trueobliqui_;;f_-.1r_0°,theleugitudeofthe descendingnode;I,theincl'n-
a_on ofthelunarequaf_-tothe _,cliptic;and _, theanglemeasured inthe lunar

equatorbetween_.hedescendingnode and the moon's prime meridi,_,n.These
_mglesare sh.,Jwnin Figure3-13b and the trans_ormat'onis

Y_ = M'¥ (_-40)

where

"Z M' : R ((2) N (I) R.(f_-_) Rx(_) _3-41)

The elementsof M' are

; J

3-28
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i

z b

i} unar Equator
I

_..._.-.--- Lunar Prime Meridian

__ liptic

:-' _ Lu-_laxb
r Orbit Plane

x_1__ _'_..q_ -A i I_ Earth's Equator

T=ue Equinox

_ of Date

_ Figure 3-14. Selenographic Transformation Angles

/s

m11'--- cos_ cos _+ _in;_ cos I sin__

' = -cos_ sin f_cos'_- sin_(cos I cos f?cos _ :- sin I sin'S)m12

m13 = - cos :' sin l_ sin c - sin _(cos I cos f_ sin _" - sin I cos "_)

' = sinO cos f_+ cos _ cos I sir fl21

m22 sin_? sinf_cos_ cos,l_(cos I cos._cos'_+ sin I sin'S) (3-49.)

m23' = sin 3 si;_ C: sin _ - cos 9(cos I cos ._2sin _- sin I cos_)_

' --- sin I sin
_q31

t

m32 : sin I cos f_cos _- cos I sin_

' -- sin ! cos f_sin_ + cos I cos _"m33

The Euler angles ?.', i, and A are determined as functions of the orbital
parameters ,:, ;_, I, and _:,_by equating elements of the M and M' matrices.
Equating m_ and m33 yields

--'_ _ 3--29
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I
1

cos i : sin I cos _-_sin)'+ cos I cos'¢
s

(3-43)
-;

sin i s :/1 - cos 2 i s /

. Equating mal and ma2 to m3'I and m:_2 , respectively,yields

' sin_' : - sin I sinf2/sin i
s

(3-44)

cos fF : (cos i sin _- sin I cos _ cos _)/sin i ,-

", Equating m,3 and m2a to m_a and m_a, respectively, yields
o:

; A: A+O (3-45)

"%. .l

where the parameter A, shown in Figure 3-14, is obtained from , .-- ,

sin_= - sin f'/ sin cjsln i s

(3-46) ,,
i"

cos /_ : (sin I cos _ - cos I cos .Qsin _),/sin I s .

The _:.gle _, measured along the lunar equator from the descending node to the
hmar prime meridian, must be determined from the orbital motion of the moon• "

,_s a result of Cassini's first law the mean rate of rotation is equated to the
"" mean orbital rate, resulting in

,b"

#M= \M - f?M (3-47)

where _. is the mean longitude of the moon, _ the longitude of the ascending

node, and the subscript M denotes mean values. Correcting Equation (3-47) for :
lunar physical librations gives the true value of _) _:

_ : (\'_ + rM) - (_)M+ %)" (3-48)

3-30
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_r.! _ Correcting fl and I in Equations (3-43) through (3-46) for nutation and libra_ion

_ yields their true values

"_ _ = _M + _ + _ (3-49)

I = !. + p. (3-50)

k-

The longitude of the mean ascending node of the lunar orbit is (Reference 4)

_ _M =12°'1127902- ?0529539222 d+ ?20795(10 -2) T

(3-51)

"r_ + "O2081(10--2) T2e+ ?2(10--S) T3'e

the inclination of the mean lunar equator to the ecliptic is .."

_ IM: I°32: I, (3-52)

and the geocentric mean longitude of the moon is

k M= 64?37545167 + 1371763965268d e- ?1121575(10-2) Te

(3-53)

_ 7113015(10 -2 ) T 2 + ?19(10 -s) T-_.
e e

The Te-variable and de-variable in the above equations correspond to the number
of Julian centuries of 36525 Julian ephemeris days past 0h January 1, 1950 ET,
and the number of ephemeris days past the same date, respectively.

The nutation in longitude, _@, and the true obliquity, _, are given in Section
3.3.1.2. The physical librations, determined by Hayn, in longitude of the as-

cending node, _, inclination, PM'and mean longitude, "rM, are as follows:

3-31
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I

_M: [- 0?0302777 sin(g) + 0?0102777 sin(g + 2r,,M)

(3-54)

- 7305555(10 -2) sin(2g + 2o_M)]/sin IM.

,

Pu = - .0297222cos(g) + .0102777cos(g + 2cou)

• (3-55)

- °.305555(10-2) cos(2g + 2oJM).

• TM= - 73333(10-2) sin(g) + ?0163888 sin(g') + .°5(10-2_ sinC2_'M). (3--56)

., where the parameter g is the moon's mean anomaly
/

g = 215754013 + 13.°064992do (3-57) J

the parameter g' is the _un's mean anomaly ]

g' = 3589009067 + 79856005d e (3-58)

and _M is the moon's arguIr _nt of perigee

- _ = 196.745632 + o 1643586d_ (3-59)
_, M "

The variablesabove are substitutedtctoEquations(3-43)through(3-45)to yield

the Ealer anglesf2',i,, and A requh'edinthe selenocentricto selenographic

transformationgivenby Equations(3-37)through (3-39).

The _elocitytransformationfrom selenocentrictoselenographiccoordinatesis

obtm.inedby differentiatingEquation(3-37),yielding

Yb -- MY + MY (3-60)
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The time derivative of M is obtained by differentiating its elements in F_lation

(3-39) with f2 and i s assumed zero, i.e.,

j

:( td: A m,, - m,2 - (3-61)

": U 0 0"_,
}

The time derivative of A is obtained by differentiating Equation (3-45) after
substituting Equation (3-48) for _?. The resulting time derivative is

)} A : A + _M + +M - i_M- bM" (3-62)

. where

"_ " _)]/(sin i cos A) (3-63a) i= [- cos(f_ M+ crM+ A_b) sin e(_ M+ ..."

LM= .266170762 (10 -s) - .12499171 (10 -1_) T (3-63b)

_M = - .1069698435 (10-') + .23015329 (10 -13 ) T (3-63C)

and

_-M= - "1535272946(10-9) cos g + .569494067 (10 -j°) cos g'

(3-64a)

+ .579473484(10 -11 ) cos2_) M

:- .520642191"_ "(Iu-7) cos: M

_. + .1811774451 (10 -7) cos(g �2oJM)(3-64b)

- .1064057858(10 -7 ) cos(2-_ M+ 2_)
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3.3.4 Spherical-Cartesian Transformations (Reference 7)

3.3.4.1 Spherical Position and Velocity to Cartesian Coordinates

Using the spherical position coordinates, r, a, and 8, that are defined in Section ,_)
: 3.2.1, the transformation to Cartesian coordinates is seen from Figure 3-1 to be ,

I:l
• COS S Cos ct "

: - r cos a sin a (3-65)

; LzJ sin8

To transform the spherical velocity coordinates, V,/3, and A, described in
/ Section 3.2.3, it is convenient to transform to the local plane coordinate system
' (seeFigure 3-3)and thentothe.body-centeredinertia]Cartesiancoordinate

: system. If the local plane coordinates, x_p, Ylp, and z l p, are fixed inertially
_ (nonro_ting), rip may be expressed as :/

; I-C1 - - I
t I "

rlp = Ylp I= V sin A sin fl (3-66) "

_ZlpJ cosAsinfl

/:

The transformation between the local plane and the body-centered inertial
Cartesian coordinate systems is ,, "

_Ip : DF 13-67)

where

)

F 1

cos 5 cos a cos 8 sin a sin 8

D = [_ - sin a cos a 0 (3-68) :sin 5 cos a - sin 8 sin a cos 8

"i
' RI,,fPRODUCIBILITY OF THE _. i:
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!, Since the local plane system is fixed inertially, the velocity vector in Equation
(3-66) may be transformed to the body-centered inertial Cartesian axes by means
of the transformation D as follows

y : Drrlp. (3-69) ' ",<

The partial derivatives of x, y, z, J_ _, and _ with respect to r, a, _, V, A, and/_ "

arcL

_¥ r
- (3-70) :_

_; _r r

da x
' (

L ,j "_0 ./- _:

I --- Z COS

?Y ! (3-72)
_-_=1- zsina

L/_x_ + v

......... 0 (3-73) ,
_V bA b/3 _r _,

0_- _ (3-74)

0
t

8
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-- Z COS CL

)r z sin a (3-75) --;
?; ,T

V(cos /3 cos _ - cos A sin/3 sin _) , ;:

: ?r -r (3-76)
} v

o ,

sin/3(si.aAsin _ cos a- cos Asin a

_=V sin[3(sin A sin_ sina+ cos Acos a) (3-77)
r-

- sin A cos _ sin/3

and
y -)

; Icos a(cos _ sin/3 + sin S cos /3 cos A) + sin _- cos fi sin A ,.'t_,_

_- _r
?_ V :;ina(cos Ssin/3+ sin _ cos/3cosA)-cos ctcos/Sn;nA (3-78) '."

° sit,/3 sin S - cos /3cos _ cos A "

3.3.4.2 Cartesian Position and Velocity to Spherical Coordinates

The inverse of the preceding transformations is described in the following text.

The spherical radius, r, is given by i ._;

"" r = /x 2 + y2 , z 2. (3-79)

Frora Figure 3-1 the right ascension, a, and declination, _, of r are
t;'

sin _ = Y cos a - 0 < a _<2n. (3-80) ,

and "

sin b __._z_ cos _ _x/_ + y_ 7r _r- ---_ _ :;-- (3-81) '_
r r 2 2
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The right ascension is measured positive east from the inertial x-axis. The
_'_ declination is measured positive norttl from the x-y plane.

The velocity vector_s magnitude is

I

V : _/x 2 + _2 + _2 (3-82)

and the azimuth, A, and Right path angle,/_, are obtained from the local plane
components of velocity

sin A - Ylp zlp (3-83)

I cosA- O_<A_< 2Tr.
and __p+ Z_p

f

- cos/3--- - F--- (3-84) i

V V 2 2 ./

The azimuth and flight path angles may be obtained alternatively from the vector .1
products of ¥ and r as follows

_; sinA U "UN cos A U_'P'(UNX 7): - : (3-85)
t,, ZIP r

, and

_'_{ sin/3- l_x r I cos /_- r" r (3-86)
" _i!" rV rV

where U istheunitvectorinthe ;Llp -axisdirectionand has components ex-

•!i/ pressed'i_"Lhebody-centeredCartesiansystem
.¢
%

_, - sin _ cos c_

_ U :- - sin b sin _ (3-87)
zi p

_' cos b

and Ur_istheunitvectornormal to_ and

3-37
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U_- _×V (3-88)
IT×Vl

Substituting Equations (3-87) and (3-88) into Equation (3-85) yields
I

sin A = (x_ - y_) , cos A = Y(YZ - z_) + xrx_ - _}z) (3-89)
• rV sin_ cos b r2V sin _ cos

The partial derivatives of r, _, _, Vt A, and fi with respect to xt y, z, x, _, and
are

?r -_T
- (3-90)

¢

!l"_" ?a _ 1 I- (3-91) ""

,j../

?7 (x2 + y2)

- - T

- ZX

- - zy (3-92)

(x 2 + y2)
m

_V _ [0]T (3-93)

'_,(rl- zi')- (xy - yl) (xl - zl +

?_AA= 1 x,(rz-zi')+ (x_,-y_¢)(yz-z_ + Yzrl/r (3-94)
?¥ (V2 _ i.2)(x2 + y2) r//

(x3'- y_()(x2 + y2) {./r2

3-38
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?g r2v_ \ r

t

_r ?a ?8 :,
- - - 0 (3-96) ,

)

_v _
- _J-97)

_-_ v •7

z_ - yl

_.:_ ?fl _ 1 yTT 13_99) ;t,' (_ -- -

•: 3.3.5 Body-Centered True of Date to Orbit Plane -:

_> The unitvectorsintheXop,Yop, and Zop directions "_,. (see Figure 3-5), measw:ed :
:*. m the body-centered true of date coordinate system, are_
i:,
T'

!b' T 0 ,_,

;," V = W x U (3-100)
,!

:_ _ TO x ro

"-. !.
where To and r0 are the earth-centered position and velocity vectors used to de-
termtne the orbit plane coordina+,e system. If Equations (3-100) are expanded, -.

" they yield the following transformation relations between the orbit plane co-

ordinatesand the body-centeredinertialCartesiancoordinates

8-39
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/
¥ = E7 (3-101)
op

where

-- /

U x Uy U z

E: V, Vy V, (3-102)

W. Wy W,
a..

Regarding the orbit plane system as fixed inertially, the velocity transforms as
follows

r = Er (3-103)
op

and the position and velocity partial derivatives are ,,
/.-

_7 _-
°P - '_P : 1_.. (3-104)

3.3.6 Body-Fixed to Geographic Tr:x'zsformat2ons

The transformaUons between the body-centered rotating coordinate _ystem and
the geographic coordinates are dedcr,'bed in Section :3.2.2. The transformation

involves modeling the body's mean figure. The foilo,_ng sabsections present ',

the equations for an ellipsoidal earth mgd_l as well as the transformations and
partial derivatives relating the geodetic coordinates (h, _, 9) to the body-centered

_: rotati_ coordinates (Xb, Yb' zb)"

3.3.6.1 Earth Figure (Reference 7)

'rhv shape of the earth's surface is very nearly an ellipsoid of revolution. A
satisfactory means for modeling the earth is to ch.'Lracterize it as such and,
where necessary, correct local deflections of the vertical (e.g., correct
local astronomic zenith to ellipsoidal vertical). The polar axis of sym-

metry of the ellipsoid, zb , is nearly colinear with the earth's spin axis. Ths
ellipsoid's radius is greatest in the x b - Yb equatorial plane. Letting R_ denote

the equatorial radius, Rp the polar radius, and x., y_, and z the coordinates of

3-40
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L

. ii I .

j '8
a points on theellipsoidalsurfaceexpressedinthebody-centeredrotating _i :

t,

: _ axis, then the coordinates of s must satisfy the following equation -, =_

2 Z 2 _ _'xs Ys s - ,
+ -- + -- = 1 (3-)q5) , _

Re2 R _ R_ , :e p

,_ Two convenientparameters whicL describetheellipticalcross-sectionare the ,'

flattening coefficient, .:, defined by _ _

Re - I_

i f - > 0 (3-106) _ ;

and the eccentricity, e

e 2 1 _ __.(_)2= = f(2- f). (3-107)
d

_:, _ Sincetheellipso_dis symmetrical aboatl:hezL-axiso,',,hereisno lossof gener-

" _ alityinrestrictingtheanalysisto thex.:- Zb plane,,The two-dimensio_alanaly-sis utilizesthesymboi xC ,,,'_ , to de,,'_,cthattL -_,mpon__tisomitted.

_': The ec_mtion of the cross-section of the ellipsoid is

_, Z2

_',' x_, + _ - R 2. (3-108) _ ,
,", ( 1 - e -_) ,

6 TLc equationforthenormal to theellipsoidis

dxs' (3-109)' ::an _ = - ---r----

iil where ¢ is the geodetic latitude shown in Figure 3-15. Differentiating Equation

,_' (3-108)and substitutingtheresultsintoEquation(3-109)yields

_i_! ---: (1 - e _) tan _,'_. (3-110)
"(s '

:_" 3-41
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7
xb

: I

_I'--- Re "_ I

F,gure 3-15. Ellipsoid Geometrt

., Solving Equations (3-108) and {3-k10) simultaneously for x , yields
/ "

J

Re cos _b _'
x s , = (3-1.11) ,"

/I - e2 sin 2 _ "' -"

From Figure 3-15t it is evident that [

x s, -- N cos q_ (3-112a)

z s -- r sif_,_'=N(1-e _) sin_ (3-112b)

where N i_ _he distance from the point s to the Zb axis measta'ed a]ong the

normal vector to the. ellipsoid a_ point s. Subst:uting Equation (3-111) into , ._

Equati,_n (3-112a) yields

R e R
: - : ._ (3-113)

_l-e_ sin2_ v_ -(2f- f2) si-_n _b

The ellipsoids2 radius is

3-4o.

I'
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r = _x2,+----+-_z_ (3-114)
_,f $ S

"L"

_-'- Substituting Equations (3-108) aud (3-11 "'b) into i quation (3-114) yields

:- ?- _(1 - f)
, _ r. = (3-115)

/1 - e2 cos 2 ¢'

where _' is "he geocentric latitude,

3.3.6.2 Geodetic to Eaxth-Fix_d Transformation

Assume _bat pom_ "_ in l; -'re 3-15 has the coordinates xb , v.. and z o _.nthe
[ b.'xly-a.,-s _vstc. _-d is .ocated a dis+ance h from the refere. _e ellipsoid,

. i From Equ" ;,J_ ' _1 0) and Figure 3-15, the xu and z b coordinates are &

./

xb, = x, + h cos _ = (N + h) cos 4_ (3-116)
-&

'__ and

zb = z= +h since= [N(1 - e 2) + h] sing) (3-117)

" Transforming Equations (3-116) 9ud (3-117) to three din,ensions yields

"u

-x b ,'N + h) cos _bcos L _

Yb = (N +., cos@sink (3-118)

% fl_(1- e2) + h] s i,_

/

The paxti,_l derivatives of xt, , fib' and z b with respect to h, X, and _ axe

3-43
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I jF- ,_-'l I-- "m

. o,<.<>/<'hI _o__co,x.j
" cos ¢ sin

I Byb,/Bh I = (3-119)

L_zb/?hl L sine

b _ m

?Xb/?_ - (N + h) cos _ sin k

• dyb/b_ = (N + h) cos ¢ cos _ (3-120)

Zb/_)k 0

Xb/_ sine cos ki

]
-. + h - Ne2 c°s2 ¢ (3-121a)

<" 1 - e2 s i n2 _]

: I -dYb/bqbJ sin cpsin )_ #

ano

• (, e _ s . (3-121b) !
[c-')Zb/?qb] -- 4 r'l'(l - e 2) + : ;; [COS N-

1

3.3.6.3 Earth-Fixed to Geodetic

In transforming geodetic coordinates (h, ¢, X.) _o earth-fixed coordinates

(Xb' Yb' Zb)' the point of intersection of the height normal vector and the ellipsoid
(i.e., point s) is given. In transforming from earth-fixed to geodetic coordinates,

- _is poh_t is not known a priori, complicating the transformation.

Two solutionsare presented. The firstsolutionisiterativeand can yieldany

requireddegree ofaccuracy. The second solutionis a truncatedbinomialex-
pansionthatmay be used when accuracy requirementsaxe not so stringent,

The iterativetechniqueisused primarilyto determinegeodetictrackingstation

positions wl_ere high accuracy is required. For t,ld_ use (ana for near earth
satellites), the approximation h < < N is satisfied, and since the earth's figure is

nearly spherical, e 2 < < 1. Therefore, from Equation (3-118), the following
approximation can be made:
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L

N s i n q_= zb. (3-122) ]

Introducing z i , the z b intercept of the normal vector, it is apparent from
:_ Figure 3-15 that

z. : - Ne 2 s in _b. (3-123)

i•_-_ Combining Equation.q (3-122) and (3-123), the following apvroximation for z_ is

obtained

__ z i : _ e 2Zb. (3-124)

Using Equation (3-124) as an initi_ estimate for z i , the follo_ing sequence of
:: equations may be solved iteratively to yield a solution for h and ¢ ,

il ,
z = zu zi (3-125) ,_° I b -- ,..,i"/

_p N + h : /Xb2 + yb2 + z2 (3-126)"" ib

t

: sin _- Zib (3-127) i
N+h !-

R _
_ e _3-]28_N

_2 sin 2 q5 :.

,_ z i = - Ne 2 s in 4;. (3-129)

Upon convergence of z_, the a!tttude, h, and latitzdet ¢, are obtained from Equa-
tions (3-126) and (3-127). The longitude _, is

)

• _, = tan- 1 Yu . 0s_. _<2rr (3-130)

,i
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A second, computationally simpler, procedure for computing the values of ¢

and h to a _pecified point, P, is useful when accuracy requirements are less
stringent. The latitude, _, is solved for from Equation (3-110) as follows :"

Z Z t .

tan q_: s : s (3-131) -

(i- e2) xs, (I - e2)__

i where xb,Yb'and Z b ofpoin_. P are used to approximatethe subvehiclepointon
: the ellipsoid, (xs, ys, z ), req,ired in Equation (3-131).

This approximation yields the geodetic latitude to the normal vector of an ex-
panded e]lipse through point P. For h << N and e 2 < <1, it is a good approxi-
mation for the geodetic latitude.

• : Applying the Binomial Theorem to Equation (3-115) yields

' _ 3 _, 3 f? (3-132)r : R - + _ f2 sin 2 + -- sin 4 _bs 2 2
!

where terms of f higher than second order are nvglected. The geodetic height I

is nearly

h = r b - r s. (3-133)

Substituting Equation (3-132) into Equation (._-)33)yields

 Rf )sin3f2 ,3134,h=/x 2 + y2 + zb2_R e + ef + 2 e -_Re sin4"Y"

The geocentric latitude requireo in Equation (3-134) is approximated by

Iz, '_ (3-1_5)
¢' :- sin-'/1-_, ). ,;

3-46

/

1976017203-085



' I
!

O
•. The partial derivatives of h, _ and _ with respect to Xb, Yb' and z ar_ obtained%" ) b

: by differentiating Equations (3-126), (3-130), and (3-127) to yield

_ x b _

_';:. 2 a (1 - e2) sin c_cos 4 zb co

h/3Yb --- (1 e2 sin2 4)3/2 + _/_Yb (3-136)

• L_ h/? zb 4/? zb

_ _'/'_ Yb = 1 (3-137)

(x_ _) t
;,-/'_ zb

] _ -
L - Xb Zb t

4/_ xb

4/_ Yb = (1 - c2) . (3-138) " "

"I _--_ + y_ [(1 - e 2'2 (x_ + y_) + zC] - Yb Zb
'_ ? 4/'D zu (4 + Yb)

3.3.7 Earth-Fixed to Topocentric Local Tangent (East, North, Up)

The topocentric local tangent system, described in Section 3.2.4, is used in
processing ground based observation data. The transformation from geocentric

earth-fixed coozdinates (Xb, Yb' zb) to local tangent coordinates (x l t, Ylt' Zl t )
requires a translation along the geocentric radius vector to the station and a
rotation of the axis through the stationWs longitude and latitude angles. The

st2,tion parameters are defined as follows

¥_ _ the body-fixed coordinates of the station
_ _ the geodetic latitude of the station (posiUve north)

_,_ _ the geocentric latitude of the station
_ the longitude of the station (positive east)

s

h _ the height of the station above tbe reference ellipsoid.
s

The magnitude of the normal vector to the reference spheroidWs surface at the

station is given by Equation (3-]13) to be

'_ 3-47
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R
" (3-:] 39)N --

'_ v"l - C2f - f2) sin2 ¢_

The component,_ of the geocentric radius vector to the station alono the xo , Yb,

and z b axes are given by Equation (3-118) to be , :

Iixs Ns + hs) cos _b cos k-_

Ys = [(Ns + hs) cos _s sin ks (3-140)
l

_Zs_ _[Ns(1-e2) +hsi sine s

To bring the Xb, Yb, and zb axes parallel to the xlt, Ylt , and _:lt axes, a rota-
tion is made about the zu axis by the _ngle (_/2 + k) and about the new x u axis

/ by the angle (rr/2 - _). The resulting transformation matrix M1t may be writ ..q
as

Q

/

- sin k s cos ks 0

Mlt = - sin _bs cos k s - sin q_s sin k s co _. (3-141)

cos,_ s cos_ cosCs sink_ sin

The local tangent coordinates ofapointin space, xb, Yb' and z b, may be written
as _'

71t = Mlt (-rb - 7s)" (3-142)

This translates the system from the earth's center to tke station and rotates it /

to the local tangent system,

The earth-fixed velocity in the !ocal tangent system is given by

: Mt (3-143) ,'.r l t t rl)

since Mit = 0andrs = 0.
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The partial derivatives of the local tangent components with respect to the

earth-fixed components are the respective elements of the M 1t matrix given by

_¥1 t _rl t
- - M1t" (3-144)

3.3.8 Keplerian-Cartesian Transformations (References 7 and 8)

3.3.8.1 Keplerian Elements to Body-Centered True of Date Coordinates

: Consider the orbit geometry illustrated in Figure 3-5. The origin is the center
of the reference body, the x-axis points to the vernal equinox, and the z-axis

lies along the reference body's rotation axis. The satellite orbital plane inter-
sects the equator at the nodes. The angle ;_ is the right ascension of the ascend-

t_ ing node. The axis Zop is normal to the orbital plane defining the orbit's inclin-
:_ ation. The angle _, is the argument of perifocus. In Figure 3-6, the eccentricity,

:: e, and semimajor axis, a, specify the orbit's shape and size. The final element

necessary to predict a body's position and velocity is the mean anomaly M. How-
ever, the eccentric anomaly, E, or true anomaly, f, can be used instead of M to t •
define the satellite's position in its orbit. !

[i _ First, consider the transformation from the orbital elements (a, e, i, ._, _', m) to

the orbital_-ectangular coordinates (x,, y,, Zp, _p, :_p, ip). The Xp axis is directed
toward perifocus, L:_e yp axis is in the plane of motion ad ced n/2 from the

xp-axis in the direction of motion, and the z p axis is normal to the orbit plane and
completes a right-handed system. The transformations for elliptic, hyperbolic

and parabolic orbits are given below.

• Ellipse: 0 _e < 1

yp = n in E _ e2

Lp__

and

- ._ln E

t
P

_' LZ ,"1

_]' = (1 -,, cos E) cos E_ 1 - e2 (3-146)
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where
"L

E-,, the eccentric anomaly
: /__ the gravitational parameter of the reference body.

I

The eccentric anom:dy, _, is computed by Keplerts equation

--: M = E- e sinE (3-J47)

where M is the mean anomaly defined in Section 3.2.6. This equation is solved

by the following iteration scheme

_(%) = E - e s it, E - M (3-148)
.J

/

D = 1- e cos[E - .53(E)] (3-149)
L' ""

En+ I = En Dn n = 0, 1, 2, 3,... (3-150) [

where

Eo = M+ e sinM (3-151)

• Hyperbola: e > 1

lyp! : a _'_-- i sinh (3-152)

p 0 .3

• "J-I_'n _--I cosh F (3-153)
YP :-'(ecosh F - I)

zp 0

, m_.

.%50
(

1976017203-089



. i

I

I

:

'7

4_
" _: "-_ wher e

I- F _ the hyperbolic anomaly computed using Kepler's equation for a

hyperbola, M = e sin F - F. -t. "%

_' The hyperbolic Kepler equ_±ion may be solved by a Newton-Raphson iteration of
,_ the following form

_"_ (e sinh F - Fn - M)

F+I -- F - e coshF_ -- 1
_ (3-154)

[: n-- 0, 1, 2, 3,...
2%

_ where F0 = M/2. (Note: The preceding equation is singular for orbits with

[ "
e = 1.) ::

• i Parabola: e = 1

-- _ -- _ ,_j" /#
a

x q - D=/2

;1
• y, : 2/_-DqD (3-155)

zi 0

Tcp D

• _ 1 _ (3-156) %
YP (q + D2/2) ' 4

_ 0
t a

where

q _ pericen_ric distance (3-157) i..

J
i

and D is computed from Barker's equation, that is
q

;', D3 + 6qD = 6M, (3-158)

) $ ',;
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The orbital rectangvlar coordinates are transformed to inertial Cartesian posi-

: tion and velocity coordinates as follows

t

: = y, (3-159)

Zp-

and
r'

; ,e

(3-160)
=p p

., L ,,j ..
s

The elements, Pij , of the rotation matrix, P, are t ,

Pll = COS _ COS a_= sin _ cos i sin oJ

P12 = - "os _ sin _ - sin f) cos i cos cz i

P13 = sin _ sin i. :,

P21 = sinf2cos a)+ cos _cos i sinc_

P22 = - s in f/ s in c_ + cos f2 cos i cos c,_ (3-161) ":

¢

" P23 = cos f) sin i

P31 :- sin ; sin w

P32 : sin ; cos co ,"
._,:z

-- P33 = COS i "
i

m
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: 3.3.8.2 Keplerian to Cartesian Partial Derivatives

' The functional relatiorships expressed in Equations (3-159) and (3-160) are

t,

,?

"C -f=P(_' _'' i)'Fp (a, e, M) i
and (3-162)

r :P(n, _, i)_ (a, e, M).

- The partial derivatives of Y with respect to the orbital elements may be written

- p ____P

' "t_/_ and (3-163)
T' r

_¥ p p

_ for _ = a, e, and M, and

_T _.p _
F

and (3-164)
or _.r-

- r

for _,= g2,_6,and i.

The par'tiN derivatives of _ and _ for elliptical orbits "re

Xp - a - YP

_ (a, e, M) a ] r'--m r (1 - e 2) :

0 0 0 :

and

,lit, 3-53
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t

, i i

; + -n
2a p 1 - e2 \r/ x ..

/

• o rp _ .._ n (_) _ YP_ a 3 (3-166)0 (a, e, _d) 2a ,]-_ a (1 - e 2") - n r YP

• }
J

2

o o o

2

/

where the mean motion, n, is

{

1 _ (3-167)
n z _

"N_ _ tJ

The partial de,-:ivatives of P with respect to 9, c,, and i are i

-P_ -e_. 2 0-[ ?

°l
3P 13_168)
3--_= P11 P12 0

0 0

'i ':

"" [°12 - Pll 0"1 '

• 3P 0 13-169) ,..
_--_= P22 P2_

sin C sin i since sinl_sin i cos oJ 0

f 3P
= - cos [2sin i s,in , - cos f/sin i ccz,,., 0 (3-170)

: 3i

cos i sin a, cos i cos (, 0

3-54
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_ _ 3.3.8.3 Body-Centered True of Date Coordinates to KeF]erian Elements ] ,

Given the position, r, and velocity, r, at time t, the standard Keplerian elements
(_ e, i, f}, _, 1V0 are calculated as follows. Let the magnituJe of the position,
velocity, and angular momentum vectors be denoted by

r = ]YI (3-171)

V = Irj (3-172)

_! h : Ihi (3-173)

where
_t:

h= rx r.

q

_ The equations for the orbital elements and related parameters are then

I, 4J, Semimajor Axis

#r,, a -- 13-174_
;' (2_- rV2_

Ig

. Semilatus Rectum

, p =--[(rV) 2 - (¥' r) 2] 13-175)

r

Eccentricity

o - ]/_ - 2 (3-1',e),fl
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Inclination

L

Id:._h>,%i _ +n;sini=-- -

[rxri h

"r' (3-177) '

(¥x "_) -U h
< COS i = z_ z

.,. I-r-×_ I h

" where u , u ) and u axe unit vectors in the body-centered true of date Cartesianx y z - -

coordinate system and h,, by, and h axe components of ".he angular momentum
vector, h.

. j Elliptic Mohon Hype.rbolic Motion
/

a>0 a_<0

Eccentric Anomaly Hyperbolic Ancln_y "

=-- sinh F < - ._r]

e \q-_--7-_a /
(3-1_8)

c°sE-- I (I r/ ' 0 r'e -a/ cosh F : _ -

Mean Anomaly

__ .¶

."k.= E _ __.r"r M _r" r F (3-179)
&-,4 !-. a

Period

P - 2,7 _ (3-I_0)

m
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_*'_ _ Elliptic Motion Hyperbolic Motion

° a>0 a_<0 :

_-,' Energy (per unit mass) L ;
i

_" i r"

w .,, = _ Ene r gy - /_ (3-181) i.::. ,-,ne rsj -
-_< 2a 2a !

a

_i Longitude of Ascending Node "_

g h
_' sin .q = x ::_

hsini
-,.' (3-182)

• Y _,
: cos _)= h sin i :

"%- _./J

_. ,, _ True Anomaly

', sin f = _ (T'__r) ;o"' re m-l_._'= '

'< (p- r) :
: cos f -
_, re

._ Argumen*. of Perifocus

5. Z

_'" sinUc + f) - _ si-_ '
(3-184)

cos(w+ f) =_----Yh-xh,_ ; _
hr si,. i

%

: Perifocal and Apofocal Radius .,

r : a(1 - e) (3-185)
P

_, r = a(1 + e) (3-186)

,.'.,' 3-57
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r

Perifocal and Apofocal Height i

h -- r -r s (3-187)

' ha = r a -r (3-188)

The partial derivatives of the Keplerian coordinates with respect to the Cartesian
' coordinates are given by the inverse of the Keplerian to Cartesian partial
,. derivatives in Equations (3-163) and (3-164), i.e.)

: -_ a/_ x 3 a/_y... _ a/_ _" _ x,/b a 3 x/_ e "_x/3 i . . . _ x/_-M =1

_ ,J _ e/_x _ e/_y.. • _ y/_ a by,/_ e _y/3 i"

, bi/_x _ i/3y. • • (3-189)

#

_M/_ x _M/_y. • • _M,/_ z _ _/_ a _ z/_ e _ z,"_ i . . . _-/-_M l

3.3.9 Equinoctial-Cartesian Transformations (References 9 and 10)

The following sections present the transformations between the equinoctial ele-
ments) described in Section 3.2.6) and the inertinl Cartesian system. The

equinoctial elements are used only to describe closed orbits.

; ,, 3.3.9.1 Equinoctial Elements to Cartesian Coordinates

'- Conversion from equinoctial elements) a) h) k) p) q) k ) to inertial Cartesian
coordinates) _ and _) is performed in the following manner. First) the
generalized Kepler equation for equinoctial elements)

k = F+ h cosF-k sinF (3-190)

is fteratively solved for the eccentric lo_.gitude F) which is the sum of the ':
e_centric anomaly) argument of perigee) and right ascension of the ascending

i node. _:
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_ _ Next, the position and velocity coordLuates in the equlnectial coordinate system

_? (Xep , yep Zep ) are obtained as follows for both the direct and retrograde cases
rl

X1 = a[(l-h2fl) c, s F+ hkfl sinF-k]

(3-191)

Y1 = a[(1-k2/3) sinF+hkflcos F-hi "
L

_ na 2
,, : _ [hkfl cos 17- (1 - h2fl) sin F]

' (3-192)

;_' "_I = na--_2[(1 - k2fl_ cos F - hkfl sin F]
r

where

t •

, /_ _- 1 (3-193)<_ 1 */1-h 2- k 2 ;"

_ The transformation from the equinoctial system to the inertial Cartesian sys- ;

,,_" tem is given by

_: 7 f _ (3-194)

v,.,, '1

_7 r = X1f + )1_ (3-195) , _:

g_, *':

; where f and _ are unit vectors directed along the x_p and Y,v axes, respectively
'> (see Figure 3-5). These vectors are computed in the inertial Cartesian co- ,,

" ordinates as follows _:

1 - p2 + q2 2pqj 2p ' :
_, '2

{,!;: [_, _, _] _ 1 2pq (1 + p2 _ q2) j - 2q (3-196)
_c 1 + p2 + (12

- 2pj 2q (1 - p2 _ q2) j

' ;r 3-59
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where
\

_ j = 1 for direct orbits (0 _ i < 180 °)

_: j = -1 for retrograde orbits (0 < i _ 180 °)
i

In GTDS the operational choice of dL_ect elemen+.s was made for 0 < i _<90° and
_: of retrograde elements for (90°< i .< 180°).

3J.9.2 Cartesian Coordinates to Equinoctial Elements

The equinoctial orbit elements_ a, h, k, p, q, _, are calculated from the

Cartesian position, r, and velocity, }% The sem%major axis is computed as
follows:

, ) .: (3-19v)

'C .l

The eccentricity vector is given by ":....

, °

_- __ 7 (Tx_) x7 (3-198)
r ¢z

The unit vector {v is defined a,] follows (see Section 3.2.5) !

t - -
, _ _ r x r (3-199)

i \\, °

2. ,

:, The unit, vectors f and g can then be computed as follows i
3

: w_ w w i
=1 x f _ x y f =-WJ i -"

fx I + wJ Y • _ (3-200) { ._z l+w j
.j

i

lwhere j is defined following Equation (3-196).
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!

i °

: _ × _ (3-201) i _"_'

The equinoctial elements ht k, p, and q are giwan by i

- ?

h = _. i (3-202) ,_

I'P _ w (3-204) )
I + wJ

Z

! ,W

q y (3-205) 1
l+wJ z ¢ :"

The mean longitude is computed using the generalized Kepler equation I

I "
:F +h cos F-k sinF (3-206) i

|

_, where J -

with i ':

!" (1 - k2fl) X1 - hk/3Y1

cos F = k + I ":

a/i - h2 - k2 _!2

(3-208) ;

(1 - h2fl) Yt -" hk/3Xl
sinP=h av/1 - h 2_ k 2 ,/'_:,

i

The parameter _ in Equation C3-208) is given by Equation (3-193).
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! Finally, the positior coordinates Xep and Yep relative to the equinoctial coordinate :"[_
_ system are given by
/

X1=¥'?

(3-209)

Y1=¥"

_ 3.3.10 Herrick-Cartesian Transformations (References 11 s_d 12)

_ 3.3.10.1 Herrick Elements to Cartesian Coordinates

The following method is used for conversion from Herrick elements, e, _, n,

_'i and _, to inertial Cartesian coordinates. The trait vectors _, _ and _- along the
: equinoctial orbit plane coordinate directions (see Section 3.2.5) must first be

_: ' determined. The unit vector fv is _tven by

: _ : _ 13-210)
; IZl L}

" The unit vectors f and g are determined from Equations (3-200) and 13-201) as i
, functions of fv. :.

The Kepler equation for Herrtck elements is solved by Iteration for the eccentric
' longitude F,
,7

k : F _ n cos F - k sin F (3-211)

where h and k are calculated from Equations (3-202) and (3-203) as functions of !

the known vectors _-, f and _.

The coordinates of position and velocity in the direct equinoctial system, /

X l' Yi ' k l, _l ' are given by Equations 13-191) and (3-192), with _ ,

a: _ _1f3 (3-212) :

i
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1
' Finally, the position ana velocity in the inertial Cartesian system are computed

via the following transformations

¥ : Xl f + Y1_ (3-213)
I
t

- (3-214)

3.3.10.2 Cartesian Coordinates to Herrtck Elements

Given the Cartesian position and velocity vectors, r and r, the Herrick variables
e, _, n and k are computed as follows:

-e- ¥ ('f × r) xr (3-215)
r

J
the angular momentum vector is _, /

_r_' _ _ r x r (3-216) ,

and the Kepler mean motion is

f_ (3-217)
n = t

i

where the semimajor axis, a, is given by

_1

2 Ir i2_ (3-218)/z _J

t e

The mean longitude, X, is computed from the generalized Kepler equation, given
in Equation (3-206) to be
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)
"' )_=F+hcosF-k sinF £

where the variables h and k are determined from Equations (3-202) and (3-203),

with vectors @, _ and _ calculated from Equations (3-210), (3-200), and (3-201). i __ae eccentrtc longitude F is determined from Equations (3-207) and (3-208) with :.

_' fl from Equation (3-193) and X 1 and Y1 from Equation (3-209).

:" 3.3.11 Keplerian to Equinoctial and Herrtck Transformations

_:- 3.3.11.1 Keplerian to EquinoctialElements

; The conversion from Keplerian elements (a, e, i, f2, a), 1VOto equinoctial
elements is performed via the following equations.

! _, DirectSet(0°a I< 180°) RetrogradeSet(0°< I_<180°) _,

,- h = e sin(a)+ f/) h r = e sin(a)- f_) .2.../ t.
i

k = e cos(a)+ f)) k , ...
(3-219) "'

, p = tan(i/2) sin f/ Pr = cot(i/2) sinf_

q = tan(i/2) cos 13 qr = cot(i/2) cos f_

_, "_
•

:' _=M+a),f_ X =M+a)-fl _:
r i'

: 3,3.11.2 Keplertan to Herrick Elements _',

,i ConversionfromKeplerlautoHerrickelsmentsleperformedusingtheequations _
¢

'e = e cos 0 cos a)- e sin fl sin a) sin i
x

e - e sin f_cos c_+ ecos (_sLn a)cos i (3-220)

?
! e = e sina) sin i

I
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I_f : eTr,1 - e2) (3-2zl) •

"_x= i_l sin_sini .. •

=- [e I cos D. sin i (3-222) _;Y

_== I_l cos ;. :_
2

n =//a/a s (3-223)

a : !_+ ao_ _. (3-224) :

where j is defined foUow_ Equation (3-196).
¢

3.3.12 Vehicle-Fixed to Body-Centered True of Date Transformations ,,:

The propulsive and aerodynamic accelerations are modeled in the vehicle-fixed

i _ coordinate system described in Section 3.2.7. These vehicle oriented acceler-
ations must be transformed to the inertial Cartesian system to be consistent

:{ with other terms in the dynamical equations of motion.

_ The follnwing three angular _'ansformations are required to orient the vehicle-
r_ fixed coordinates with respect to the ine_,tial Cartesian axes:

,_ R, (_) the rotation about the inertial z-axis, through the right ascension,
%, of thc._vehicle's (longitudinal) Xv-aXls. ,

; I_ (-_v) the negative rotation about the new y-axin, t'hrough the declination, ,?
°:_ 8 , of the vehicle's (longtW.dinal) x_-axis, v,

_ I_ (_v) the rotation about the new x-axis (which is aligned with the x -ads), ,_
._ through the roU angle, _, to the vehicle-f_ed axes.

_i._ where I_ and R, are given by Equation (3-1), and Ry is ' '

Ry(a) : 1 0 (3-225)
i

._ [sin _ 0 cos ]

,i
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(

_t_.; _

::: Denote an P.rbitrlv:y vector by _ when expressed in the vehicle-fixed coordinates,
': and T when expressed in inertial Cartesian coordinates. Then the transformation :
_ between coordinatescan be written il

¢

/ =%, R (- R (%)T
j Y

_ (3-226) '_

_ where the elements o_ _ are ;'_

qll : COS _v COS a v

q1_ : - sin _v sin _. cos % - cos qb, sin c% o

, ; qis : - cos ¢v sin 8v cos av + sin _bv sin av ,

*_"4 qzi : cos 8v sin a v ., i,,_//#,_

.. q22: - sin q5v sin 8v sin av + cos _ cos a_ (3-227) _d ) <

' q_s : - cos Cv sin 8v sin av - sin #bv cos a v

" q31 : sin 8

<: q3i: sin q5v cos _v

q33 : COS _v COS Sv

3.4 TIME SYSTEMS _

The GTDS orbit determination program uses the atomic time system, A.1, in the
integration of the equations of motion. However, the program must interfsce with
external input-output data set. which are referenced ix) other thee systems, such
as ephemeris time (ET) for the solar/lunar/planetary ephemerfdes, universal /_'.
time (UT1) for computing Greenwich sidereal time, and universal time coordi- . ' :'
nated (UTC) for input-output epochs and tracking data. A brief descrlt_.lon of
the relevant time systems and their tnterrelationshlp_ foUow_ (R_ferences 1,

13, and 14). '_
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t
v 3.4.1 Ephemeris Time, ET

This _.s the uniform measure of time, which is the independent variable of the
equations of motion, and the ar_. u,ent for the ephemeridcs of the planets, the
moon, and the satellite. The um_ of ET is the ephemeris second, which is
defined as the fraction 1/31,556,925.9747 of the tropical year for _2 h ET of _
Jan 0d, 1900. Ephemeris time is determined from the instant near the beginning
of the calendar year 1900 v41en the geometric mean longitude of the sun referred
to the mean equinox of dat_ was 279 h 41'48704, at which instant the measure of
ephemeris time was 1900 Jan 0 d 12h •

3.4.2 Atomic Time, A.1

A.1 time is one of several types of atomic time. It is obtained from oscfllatt9ns
of the US Cesmm Frequency Standard located at Boulder, Colorado. In 1958, the
US Naval Observatory established the A.1 system based on an assumed frequency
of 9,192,631,770 oscillations of the isotope 133 of cesium atom per A.1 second.
The reference epoch of A.1 was established so that on Jan 1, 1958, 0h0m0 s UT2
the value of A.1 was 0h0m0s , Jan 1, 1958.

3.4.3 Universal Time, UT ._/_

This is the measure of time that is the theoretical basis for all civil time keep-
tug. UT is related to the rotation of the earth on its axis. Compared to ephem-
eris time, which is uniform time, UT does not take into account the irregularities
of the earthVs rate of rotation.

f

The quantity UT is defined as 12 hours plus the Greenwich hour angle (GHA) of ,
a point (representing the fictitious mean sun) on the mean equator of date whose

right agcension measured from the mean equinox of date is _I

R : 18h38m45:836 + 8,640,184._542T + :0929T_ (3-228)

where T is defined following Equation (3-20).

The Greenwich _".ur angle of this point, denoted by S in Figure 3-1f, :sU t

s

(3-229)
GHAo f S _c__ P_,= - i
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=

where _CM'ISthe Greenwichmean sidereal time; hence,

f d
/

UT -- 12h + _GM- P_" (3-230)

Adding 12 hours to both sides of _he above equation yields

,' UT + 12h : _GM- R (3-231)

-' and solving for %M

_\
"" _G. : t2h + UT+ _. (3-232) '

In practice, the point whose right ascension is R cannot be observed. Conse-
quently, the practical determinations of UT are obtained, through the intermediary
of sidereal time, from observations of the diurnal motion of the stars. Sidereal
time is a measure of the rotation of the earth .'elative to the stars, and is ,
defined an the hour angle of the vernal equinox. Therefore, the meridian transit
of a star occurs at a sidereal time equal to its right ascension.

Universal time varies from uniform time due to variations of the meridian, arising
principally from polar motion, and variations in the rotational rate of the earth

! consisting of secular, irregular, periodic seasonal, and periodic tidal terms, t
: t
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The tidr.l variations are ,rery small, the secular variation is .-:ignificant o_y over
iar_e time intervals, and the irregular vari_ions, while they may be relatively
large, are highly erratic. The periodic seasonal variation 8upears stable enough
to be l_"e_ictab 1_

There are three measures of UT in common usage: (1) UT0, which is determined
from observations of local mean sidereal time, (2) UT1, obtained by correcting
UT0 for polar motion, and (3) UT2, which results from the removal of the seasonal
inequality from UT1.

3.4.4 Uncorrected Universal Time, UT0 _ i

This measure of time is obtained by assuming an adopted conventional value hA
of the l,_ngitude of each observing station (se¢ Section 3.3.2.2). _.e local mean
sidereal time a_ transit is generally determined through observation of meridian
:ransits of stars, omitting from the apparent right ascension the nutation terms
that are independent of the coordinates of the star (the equation of the equir._xes).
.¢Ju_,_t.ractingthe east longitude of the observing station gives GM'thc Greenwich
mean sidereal time or Greenwich hour angle of the mean equinox of date. UT0

is then obtained from Equation (3-230_ by adding 12 h and subtracting R from
J

this value. Since the rr.,otion of t.he pole causes v_riations in the meridian, UT0 . /

is depender.t on the location of the observi_ station.

_4:._ Universal Time, UT1

This rxeasure of time is obtained from UT0 by _pply_ng al, _.ppropriate
correction in longitude due to the_motion of the pole and i_ the form of universal

time used in GTDS. UT] reflects the actual orientation ol the earth w_h respect
to the vernal equinox at that instant. UTI will be the same for _.11observatories.

In contrast, UT0 time, as determinea by different observatories using their
adop_d IoLgitade In calculations, results in a different value of UT0 for each

\ observatory.

Then

UT1 : UTO - _ (3-234)

where _ is given in Equation (._-31).

UT1 time is used by GTDS to compute the _ as given in _qu,_t_on (3-19).
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3.4.6 Universal Time, UT2

If the extrapolated value of UT1 time is ,_orrected for periodic seasonal varia-

tions, SV, in the earth's speed of rotation, the resulting time is UT2. UT2 does
not represent the actua' orientation of the earth with respect to the vernal equi-
nox. UT1 should always be used when the actual orientrotion of the earth is
required. UT2 is often referred to as GMT, Greenwich Mqen Time, and ZULU
time. The equations for UT2 are

UT2 = UTI + SV (3-235)

where

SV = :022 sin 2_t - _017 cos 2_t - so07 sin4_t + :006 4_t (3-236)

]

SV = ._022sin 2_zt- .s012cos 27zt- Y006 sin 4_t + Y007 cos 4_t. (3-267)

Equation(3-236)was used priorto 1962 -_clEquation(3-237)has been inuse
since 1962. The quantity t equals the fraction of the tropical year elapsed from ] !

thebeginningofthe Besselianyear forwhich thecalculationis made. (One
tropicalyear= 365.2422days.)Sinceseasonalvariationscanbe knownprecisely
onlyaftertheiroccurrence,UT2 itselfisrarelyused. The BureauInternational
dePHeurealsoissuescorrectionsfor̂ X andSV.

3.4.7 Universal Time Coordinated, UTC -

This is the standard time _cale to which tracking stations are synchronized. _,.
%

UTC time isderivedfrom atomic time,A.I,ina manner which makes italmost
synchronot',swithUT2.

Up to January 1, 1972, the UTC time .,_cateoperated at a frequency offset from '_,
the atomic time scale. The value of the offset was periodically changed by intez-

national agreement so that the UTC scale would correspond more closely to *_,
UT2,

r

On January 1, 1972, a new improved UTC system, adopted by the International
RadioConsultativeCommittee(CCIR),was internationallyimplementedby the i
time-keeping laboratories and time-broadcast stations, i

,=_ I
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The new UTC system eliminates the frequency offset from atomic time, thus
making the UTC second constant and equal in duration to the A.1 second (Refer-

ences 15 and 16). The new UTC time scale is now kept in synchronism with the
rotation of the earth to within _0.7 seconds by step-time adjustments of exactly
one second, when needed.

I

3.4.8 Station Time, ST

This measure of time is obtained at each station by counting cycles of a rubidium
atomic frequency standard. The difference between ST and UTC is tabulated by
each station. The observables are recorded in ST and then transformed to UTC.

3.5 TRANSFORMATIONS BETWEEN TIME SYSTEMS

Desired transformations between the time systems, ET, A.1, UTC, and UT1 are
carried out in the GTDS orbit determination program by evaluating either a stan-
dard formula or an appropriate time polynomial.

3.5.1 Transformations by Standard Formula /

_:_ _ For most purposes, the difference between A.1 and ET may be considered a
•_ _t_ constant. The suspected di.-'erepancy is roughly two parts in 109. The actual
?

- transformation between A.1 and ET time is given by

._ (JD- 2,436,204.5) (86,400)
_- (ET - A.1) : ATxgs8 - 9,192,631,770 × Af_*u'"

: (3-238) _
• _ 2e(pa) 1/2 sin E

: -_j, + c2

_: where

¢,

_ 3oTtgss _ the ET - UT2 on 1 January 1958, 0h0m0 _ UT2 minus the
_i periodic tern_ in Equation (3-238) evaluated at this same epoch

.ID _ the Julian date
_:¢_. 2,436,204.5 _ the Julian date on 1 January 1958, 0h0m0_

_: Af c_i_ _ the correction _,o f_,,_ : 9,192,631,770 cycles c,f cesium per
_ ephemeris second
" /__ the gravitational constant of the sun,

8

_ 1.327,154,45 x 101. kma/sec 2
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a -the semimajor axis of the heliocentric orbit of the earth-moon "

: barycenter, 149,599,000 km

e _ the eccentricity of the heliocentric orbit of the earth-moon
barycenter .01672

c - the speed of lightat an infinitedistancefi-omthe sun,

299,792.5 km/sec
E _ the eccentric anomaly of the heliocentric orbit of the earth-

moon barycenter.

The first term of Equation (3-238) arises because A.1 was set equal to UT2 at the
i beginning of 1958. The second term accounts for the difference between the

lengthsof ET and A.I seconds (ifAfcesi,m isnonzero). The periodicterm
arisesfrom generalrelativity.Itaccountsforthe factt.hatA.1,UTC, and ST
times are measures of propertime observed on earth,and thatET is a measure
ofcoordinatetime intheheliocentric(strictlybarycentric)space-timeframe

ofreference._fhecontributionofthelasttwo terms in Equation13-238)is

_,_ negligible for the range of applications currently contemplated for GTDS.
: Hence,the transformationbetween ET and A.I isaccomplishedusingthe

approximateformula,
-\ +#

+.
/

ET - A. 1 -_32.sI_ (3-239)

.1
3.5.2 Transformations by Time Polynomials

The remaining transformations between the time systems A.I_ UTC, and UT1
are accomplished using the time difference data A.1-UTC, and A.1-UT1, supplied
by the U. S. Naval Observatory. These data have been conveniently reduced by t
quadratic poiynomial fits in order to improve the efficiency of the transformation +

procedure. The time difference polynomials derived for use by the GTDS program
have the form

(A.1 - UTC)I : air + ai2T + ai3T2 (3-240)

(A. 1 - UT1) i--- a,+ + ai5T + a 6T 2 (3-241)

where
t

A.1-UTC _ the difference between A.1 and UTC time, in seconds.
A.I-UT1 - the difference between A.1 and UT1 time, in seconds.

i' - the number of days from the beginning of the time span covered
by the polynomial, T = 1, 2, . . . For the given date, MJD,
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T - MiD - MJD: + 1 (3-242) i

where MJD_ is the tabular modified Julian date which bounds the interval from
below,i.e.,

MJDi _<MJD < MJDI+I (3-z43)

The coefficients a.. are given in Table 3-2 next to modified Jtdian dates (rood
11

2, 430, 000) defining the time interval for which the coefficients are applicable.
These coefficients and associated time spans were determined by least-squares
fitting second order polynomials to published time difference data. The time spans
were determined by constraining the maximum deviation (between the data and poly-

nomial) to be less than. 0005 seconds for (A. 1-UTC), and less than, 005 seconds

for (A. 1-UT1). The table covers the time span from January 1, 1958, and is up-
dated periodically. Provision is made for inserting futu:e A. 1-UTC offsets (leap
seconds) as predicted by the U.S. Naval Observatory. Extrapolation of A. 1-UT1

is achieved by performing a linear least squares fit on the data for tbe last six

months to obtain als, the A. 1-UT1 rate. The second order coefficient, ai5 , is"
set equal to zero. This extrapolation is used for one year from the date of the _,

/
last available observation; after this, both a is and a i6 are set equal to zero. .:t-

3.6 POL'.rNOMIAL REPRESENTATION OF EPHEMERIS DATA

In GTDS, planetary and lunar positions and velocities, as well as the earth's
nutation, are determined by evaluating mt_ltiple-day-arc Chebyshev polynomials
whose coefficients are derived from ephemeris data corttained on tapes supplied

by the Jet Propulsion Laboratory (JPL) (References 5, 17, and 18). These
Chebyshev polynomial representations maintain the accuracy of the original data . i

" _ while increasing efficiency by eliminating the need to interpolate on the JPL '
ephemeris data. The data contained on the JPL tapes are the positions and veloc-

ities of the planets Mercury, Venus, Earth-Moon baT.Tcenter, Mars, Jupiter,
Saturn, Uranus, Neptune, and Pluto, the Earth's Moon, plus the nutation rates in '
longitude and obliquity. These data are generated by weighted least-squares

estimation of the appropriate orbital models using source positions obtained on

,. the basis of current planetary theories. Positions and velocities on the tapes

,. are referred to the rectangular equatorial system of the mean equator and equinox ,'
of 1950.0, with planetary data being heliocentric and lunar data geocentric. ,

The data needed to determine the lunar ephemeris and nutations were obtained
by evaluating the Improved Brown Lunar Theory with corrections suggested

} by Dr. W. J. Eckert usingvaluesof astronomicalconstantsadoptedby the IAU in

J
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,, Table 3-2 (1 of 2) I
Time Difference Coefficients

Modlfied A.1-UTC A.1-UT1 ?

Gregorian Julian -_

Date Date ail ai2 ai3 ai4 ai5 al6 _
01-01-58 6204 -0.1618000D-01 0.9745798D-03 -0.3991597D-05 0.!858875D-0II0.2017377D-02 -0.I-_09314D-04

01-16-58 6219 0.1758511D-01 0.9402134D-03 -0.2288330D-05 0.4548636D-01 _[0.1618852D-02 0.1799831D-05 I

02-06-58 6240 0.5616044D-01 0.8366484D-03 -0.1373626D-05 0.8011670D-31 0.1662466D-02 -0.2698712D-05
02-20-58 6254 0._754361D-01 0.8397126D-03 0.4555439D-06 0.1028026D 00 0.1625878D-02 0.2606312D-05

04-10-58 6303 0.1496110D 00 0.9429822D-03 -0.2131837D-05 0.18745_J3D 00 0.1994024D-02 -0.6054242D-05

05-31-58 6354 0.1926477D 00 0.8642607D-03 0.2022977D-05 0.2728259D 00 0.1228771D-02 -0.6293706D-05

06-12-58 6366 0.22_"3144D 00 0.9408642D-03 -0.1432435D-05 0.2866422D 00 0.1092088D-02 -0.102o374D-04
07-03-58 6387 0.2626176D 00 0.8881868D-03 0.1373626D-05 0.3050101D 00 0,6156755D-03 0,3038138D-05 _"

97-17-58 6401 0.2952014D 00 0.9007882D-03 -0.1810101D-06 0.3165780D 00 0,2966259D-03 (,°6605071D-05

10-23-58 6499 0.4016215D 00 0.8420982D-03 -0.2598091D-06 0.4096507D 00 0,1671038D-02 -0,1379641D-06

11-27-58 6534 0.4508753D 00 0.76_8908D-03 0.2232538D-05 0.4681985D 00 0.1664009D-02 -0.818369oD-06

12-25-58 6562 0.4940484D 00 0.8903961D-03 0.4597416D-06 0.5142490D 00 0.1485226D-02 0.3096075D-05

01-29-59 6597 0.5458328D 00 0,9169140D-03 0.4557703D-06 0.5700569D 00 0.1393824D-02 -0.:39480_D-05

02-26-59 6625 0.5918885D 00 0,9479880D-03 -0.2074632D-06 0.6028216D 00 0.1705016D-0Z -0.3217583D-05 _!

; 08-02-59 6782 0.7350500D 00 0.1110000D-02 I-0.5000000D-04 0.7885600D O0 0.8714286D-03 -0.2857143D-04

08-06-59 6786 0.7587371D 00 0.8704235D-03-0.2258611D-06 0.7918877D 00 0.5915514D-03 0.7643986D-_5

08-27-59 6807 0.7969748D 00 0.8567179D-03 0.4459769D-06 0.8076672D 00 0.9517989D-03 0.6897709D-05

•j!_ 10-01-59 6842 0.8472612D 00 0.8507324D-03 0.1213704D-05 0.8492754D 00 0.1595855D-02 0.2668635D-05

{, 11-05-59 6877 0.89_°3352D 00 0.9424176D-03 -0.3296703D-u_ 6.9081024D 00 0.1771395D-02 0.2658371D-05

; , 11-19-59 6891 0.9309792D 00 0.86_8708D-03 0.4694539D-06 0.9_34968D 00 0.1775083D-02 -0.4566803D-05 :

i 12-17-59 6919 0.9762.195D 00 0.6729432D-03 0.1359837D-04 0.979_032D 00 0.1469490D-02 -0.3076611D-05
01-14-60 6947 0.10n5776D 01 0.1276327D-02 -0.2546813D-07 0.I015154D 01 0.1431175D-02 0.6904889D-0C _J

06-30-60 7084 0.1179992D 01 0.1276583D-02 -0.7058271D-07 0.12237_3D 01 0.6918611D-03 -0.1706175D-05 •/"

09-07-60 7184 0.1306970D 01 0.1251737D-02 0.2006400D-06 0.1t778,¢5D 01 0.1272192D-02 0.10630G2D-05

01-01-61 7300 0.1459942D 01 0.1290565D-02 -0.1259551D-07 0.1442413D 01 0.7002162D-03 0.5207392D-05

04-20-61 7409 0.1600435D 01 0.1288668D-02 -0.4508204D-07 0.1572890D 01 0.1431424D-02 -0.4865981D-05

08-01-61 7512 0.1682730D 01 0.1297609D-02 -0.1611287D-07 0.1666425D 01 0.6024381D-03 0.4223422D-05

12-17-61 7650 0.1861600D 01 0.1300000D-02 -0.1262726D-15 0.1826452D 01 0.5920023D-03 0.6458468D-04

, 01-01-62 7665 0,1881260D 01 0.I121344D-02 0,9459211D-08 0.1843717D 01 0.1287215D-02 0.1332452D-05 :"

06-02-62 I 7817 0.2051849D ul,0.1116318D-02 0£776893D-07 0.2070910D 01 0.4724146D-03 0.1963054D-05 :;
09-12-62 7919 0.2165931D 01[0.I120481D-02 0.5828122D-09 0.2141475D 01 0.1490751D-02 0.1756295D-05

01-05-63 (034 0.229476_D 011r'10.111ol82D-02 0.6620223D-07 0.2336928D 01 0.5611055D-03 0.7101327D-05 :'

04-13-63 8132 0.240460oD 01 0.11..198D-021-0.4265743D-08 0.2460437D 01 0.2022677D-02 -0.6346917D-05

08-14-63 8255 0.2542758D 01 0.II18567D-02 0.I036236D-07 0.2618246D 01 0.I139977D-02 0.6860039D-05 (

11-01-63 8334 0.2731246D 0110.iil1958D-021 0.1542096D-06 0.2750605D 01 0.2253339D-02 -0.1975578D-05
l

01-06-64 I 8400 0.2805812D 01 0,1298018D-02 -0.1044524D-07 0.2891822D 01 0.1992589D-02 0,7474964D-06 '_

04-01-64 I 8486 0.3017345D 01 0.1293842D-02 0.13_4168D-08 0.3963530D 01 0.2684157D-02 -0.6935132D-05 _ ,
07-07-64 ! 8583 0.3142858D 01 0.1294845D-02 -0.4926524D-07 0,3254806D 01 0.9664385D-03 0.4236349D-05 ,

09-01-64 1 8639 0.3315311D 01 0.1287598D-02 0.3103647D-06 0.3321821D 0110.1515276D-02 0.I055086D-04

10-01-64 I 8669 0.3355178D 01 0.1295054D-02 -0.1298027D-C8 0.3379279D 01 _0.2285529D-02 -0.4295243D-06 i

01-01-65 1 8761 0.35742671 _ Ol 0.1294804D-02 0.45888931;-08 0.3587570D 01 0.2039134D-02 0.5294157D-06

03-01-65 I H820 0.3750694D 01 0.1297441D-02 -0.I153898D-07 0.3705315D 01 0.29024361)-02 -0.4622248D-05

07-01-65 I 8942 0.400883,11) 01 0.1296214D-02 -0.8656292D-08 0.3991956D 01 0.1542490D-02 0.1237396D-65

09-01-65 I 9004 0,4189151D 01 0,1296106D-02 -0.1562328D-08 0.4089639D 01 0.2405161D-02 0.2545870D-05

12-09-651 9103 0.4317425D 01 0.1298000D-02 -0.1337040D-16 0.4347453D 01 0.2446044D-02 -0.1489223D-04 {

01-02-66 I 9127 0.434852£D 01 0.2591633D-02 0.1658375D-08 0.4396586D 01 0.2342899D-02 0.1221517D-05

06-14-661 9290 0.4770985D 01 0.2594067D-02 -0.1855570D-07 0.4811298D 01 0.1594668D-02 0.3251986D-05

09-25-66 I 9393 0.5038040D 01 0.25_0933D-62 0.19486571)-07 0.5012240D 01 0.2862011D-02 0.5936044D-06 ;_

12-01-661 9460 0.5210963D 01!0.2592218D-02 -0.42962871)-08 0.5211300D 01 0.20905211)--02 0.2751869D-05 "_

04-23-671 9603 0._581668D 0110.2593321D-02 -0.8806318D-08 0,5570056D 01 0.2681584D-02 -0.6356829D-05

08-11-67 I 9713 0.5866922D 01[0.25853_6D-02 0.34" {871D-07 0.57937861) 01 0.1666173D-02 0.7240946D-05

?

11-30-671 9824 0.6154340D 01]02590120D-02 0.3398956D-07 0.6063976D 01 0.24729661)-02 0.9022560D-06
02-01-681 9887 0.6217630D 0110.2592005D-02 -0.3637691D-10 0,6227322D 01 0.2259530D-02 0.2955707D-05

I

06-01-681 10008 0.6531262D 0110.2591999D-02 0.6570560D-ll 0.6539410D 01 0.1846400D-02 0.2752718D-05

12-26-68 I 10216 0.7070398D 01 0.2592008D--02 -i).6112177D-10 0.703')145D 01 0.2375908D-02 0.3412215D-05 i [

05-18-69[,. 10359 0.74-I1054D Ol 0.2591984D-02 0.12925.161)o09 0.7448662D 01 0.23188771)-02 -0.17309471)-05
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1
Table 3-2 (2 of 2)

Time Difference Coefficients

Gregorian Modified A,I-UTC A.I-UTIJulian
Date

Date all ai2 ai3 ai4 a i$ ai6

09-07-69 10471 0.7731358D 01 0.2592001D-021-0..5477020D-11 0.7693900D 01 0.2938450D-02 -0.72184561>-07 i

04-14-70 10690 0.6299006D 01 0.2592000D-02 0.2950026D-11 0.8339493D 01 0.3331022D-02 -0.75470161)-05

06-17-70 10_15 0.8623006D 01 0.2592000D-021 -0.6895982D-16 0.8639866D 011 0.2150943D-02 0.56553411>-05

12-08-70 1C_28 0.8915902D 01 0.2592000D-02 -0.2521662D-11 0.8955715D 01 _ 0.2377667D-02 0.2_34677D-05

04-17-71 11058 0.9252862D 01 0.2592000D-021 0.2260392D-16 0,9318675D 01! 0.3177070D-02 -0.4467255D-05
06-27-71 11190 0.9595006D 01 0.2591993D-02 0.8745209D-10 0.9663368D 01 0.2525044D-02 0.6834257D-05

11-26-71 11281 0.9830878D 01 0.2592018D-02!-0.5629834D-16 0.9961526D 01! 0.3439084D-02 -0.1127429D-04

01-01-72 11317 0.1003436D 02 0.0 0.0 0.1006682D 02 0.3204370D-02 0.1683766D-05

05-25-72 11462 0..1003438D 02 0.0 0.0 0.1056214D 02! 0.3100347D-02 -0.7556443D-05

07-01-72 11499 0.1103438D 02 0.0 0.0 0.1066897D 021 0.2153567D-02 0.50683411)-05
12-01-72 11652 0.:,103436D 02 0.0 0.0 0.1U1230D 02! 0.3029462D-02 0.8200901D-05

01-01-73 11663 !0.1203438D 02 0.0 0.0 0.1121122D 021 0.3275744D-02 0.12681161)-05
05-22-73 11624 0.1203438D 02 0.0 0.0 0.1169615D 02 0.2739495D-02 -0.1989802D-05

09-12-73 11937 0.1203438D 02 0.0 0.0 0.1198002D 02 u 0.3151757D-02 B.7251402D-06

12-23-73 12039 0.1203438D 02 0.0 0.0 0.1230448D 02 0.3394470D-02 -0.7916667D-04

01-01-74 12046 0.1303438D 02 0.0 0.0 0.1232661D 02 _ 0.2490510D-02 0.4120220D-05

05-10-74 12177 0.1303438D 02 0.0 0.0 0.12707_',D 02 0,3751944D-02 -0.2040723Do04

07-12-74 12240 0.1303438D 02 0.0 0.0 0.1286793D 02 0,1846049D-02 -0.16154311)-05

06-12-74 12271 0.1303438D 02 0.0 0.0 0.12_6430D 02 -0,4005000D-01 0.10350001)-01I

06-15-74 12274 0.1303438D 02 0.0 [ 0.0 0.1292856D 02 0.5957143D-02 -0.3214286D-03
08-22-74 12281 0.1303438D 02 0.0 0.0 0.1294253D 02 0.1314643D-02 0.5946429D-03

08-28-74 12267 0.1303438D 02 0.0 0.0 0.1296817D 02 -0.3707143D-02 0.6738095D-03 ,.1,,"
09-05-74 12295 0.1303438D 02 0.0 0.0 0.1297733D 02 -0.I032143D-03 0.6053571D-03

09-11-74 12301 0.1303438D 02 0.0 0.0 0.1299306D 02 0.2219481D-02 0.5864136D-04

09-23-74 12313 0.1303438D 02 0.0 0.0 10.1307627D 02 -0.4386500D-01 0.8875000D-0209-27-7,1 12_17 0.1303438D 02 0.0 0.0 0.1307670D 02 -0.4800000D-01 0.1290000D-01

09-30-74 12320 0. 1303438D 02 0.0 0.0 10.1306024D 02 -0.1315714D.-01 0.2742857D-02

10-05-74 12325 0.1303438D 02 0.0 0.0 0.1305110D 02 0.4583001D-13 -0.888178413-14
10-09-74 12329 0.1303438D 02 0,0 0.0 0.1307236D 02 0.3154490D-02 -0.1800921D-05

01-01-75 12413 0.1403438D 02 0.0 0.0 0.1331909D 02 0.3057353D-02 -0.6523143D-06

04-08-75 12510 0.1403438D 02 0.0 0.0 0.1361908D 02 0.2120486D-02 0,3011148D-04

05-03-75 12535 0. 1403488D 02 0.0 0.0 0.1366022D 02 0.2498500D-n_ -0.4375000D-02

05-07-75 12539 0.1403438D 02 0.0 0.0 0.1388984D 02 0.4292143D-02 -0.3535714D-03

05-13-75 12545 0.1403438D 02 0.0 0.0 0.1371077D 02 0.2625874D-03 0.2807692D-03

05-24-75 12556 0.1403438D 02 0.0 0.0 10.1374876D 02 -0.2339286D-02 0.4821429D-03

05-31-75 12563 0.1403438D 62 0.0 0.0 0.1375854D 02 -0.4590000D-02 0.]850000D-02

06-05-75 12568 0.1403438D 02 0.0 0.0 0.1376146D 02 0.8219048D-02 -0.8952381D-03

06-12-75 12575 0.1403438D 02 0.0 0.0 0.1377704D 02 0.1030643D-01 -0.1253571D-02

06-18-75 12581 0.1403438D 02 0.0 0.0 0.1379992D 02 0.3318864D-02 -0.1541667D-03

06-28-75 12591 0.1403438D 02 0.0 0.0 0.1384005D 02 9.2864403D-02 0.0
I

07-01-75 12594 [0.1403438D 02 0.20_0000D-07 0.0 0.1384864D 02 0.2864403D-02 0.0

07-03-75 12596 /_0.1403439D 02 0.2000000D-07 0.0 0.1488556D 02 0.0 0.0
........J

!
r
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1964. However, spacecraft trajectory data obtained more recently indicate that
some of the constants still require significant corrections. The uncertainty in /

,: the geocentric position of the moon's center of mass at the data points of the
ephemeris is estimated at 150 meters and the uncertainty in the distance is about
60 meters.

:_ The evaluation of the orbital models of the planets needed in the least-squares
} fitting process was carried out by numerical integration of their differential

equations of motion using a 1/2-day step-size for Mercury, a 2-day steI_-size for
: Venus and the Earth-Moon barycenter, and a 4-day step-size for Mars and the ir

outer planets. A second-sum predictor-corrector integrator was used with
fourteenth differences of the accelerations retained. The tabular ephemeris data

i obtained in this manner can be used directly by interpolating for intermediate
• values or they can be reduced by cur_ e-fitting techniques at the sacrifice of
i additional accuracy.

The JPL software used to retrieve data from a JPL ephemeris tape provides
interpolated values of positio_ and velocity vectors of any requested set of bodies
relative to any requested central body. Bounds for the truncation error associ-
ated with the fifth-order Everett interpolation formula _re given in Table 3-3.

/##,Table 3-3 ,_

Bounds for Trmacation Vrror When Using Fifth-Order
Everett Interpolation Formula

Body Position Velocity

Mercury 8890.00 x 1) "12 AU 4420.00 × 10 -12 AU/day

Venus 4.73 x I0"12AU 0.62 × 10 -12 AU/day

E_xth-Moonbarycenter 5.19 x 10 -12 AU 2.50 x I0 -12 AU/day i

\ Mars 6.47 × 10 "1_ AU 5.77 ;" 10 -12 AU/day

Jupiter 6.64 × 10 -_2 AU 5.72 _ 10 "12 AU/day

Saturn 6.64 × 10"12 AU 5.72 × 10 12 AU/day

Uranus 6.64 × 10 -_2 AU 5.72 × 10 _2 AU/day

Neptune 6.64 _ 10 -_2 AU 5.72 × 10 _2 AU/day

Pluto 6.64 × 10 12 AU 5.72 × 10"12 AU/day

Moon 1.0100 × 10- _ earth radii 1.4500 _ 10 _ earth radii/day

Nutation in Longitude 0.46 × 10 -_2 radians 1.16 • 10 _ radians/day

Nutation in .............Obliquity _ 0.23 > 10 -_ rad_ans _0.5_ > 10 '_ radians/day |

3-7_
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The Chebyshev polynomial coefficients are obtained from the JPL ephemeris
data in the following manner. Let the function value_ provided by the JPL

software at requested times ti, i = 1, 2, ... , m + 1, for a single component of !
position, velocity, or nutation, be designated Yi • An m th order interpolating I

function in the interval [t i , tin+1] can be obtained as a linear combination of i

basic functions Fj (t) i

m+l

Ym(t) = ___ cj Fj (t) (3-244)
j=l

by requiring that the differences between the data and the function vanish, i.e.,

The choice of the functions, F (_,), j = 1, 2, ..., m + 1, in Equation (3-244) hasJ
important ramifications both on the obtainable accuracy of Y_ (t) for t / t and

the ease of determining the c j.. /t_

The interval It 1, tin+1] is transformed to [1, -1] by the linear transformation of
variables

2t-(tm+ ! • t 1)
x -- (3-246)

tin+1 -t 1

The functions F are then chosen as the orthegonal Chebyshev polynomials of

degree j - 1, i,e.,

T (x) cos ,:j - 1) cos i x] (3-247) _ "
, where J 1
\

TI (x) 1 _¢':

"12(x) x

T3fx) 2x 2 ]
(3-24_) !

s

l'j_lix) - 2xl'j(x) "[, I (x,
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! Under thes_ conditions Equations (3-244) and (3-245) can be reformulated as
; I

m+l /

Ym(x) : _ cjTj(x) (3-249) •

; and 2

,-7_: :o ,
i=l j;1

Data reductto_ can be achieved by selecting the largest possible interval

[t 1, tin+1] for which

Max y- ci Tj (x) < e (3-251)
x j;l

for x iv [1, -1]. This is satisfied if the coefficient of the truncated term

c, 2 ,: _, because of the min max property of Chebyshev polynomials. For a
/ gtve,_ interval It 1, tin+ 1 ] , the discrepancy between y and Y (x) is minimizedIn

! and the amount of work required to determine the c i substantial'y r _duced by ,, :
selecting the base points x as the roots of the CYnebyshev polynomial _f degree / .,

: m+l.

x. : cos (2i - 1) i = 1, 2, . . . , m + 1 (3-252) ..
" 2(m + I)

At thesepointsthe polynomialshave thefollowingoz_._hogonalitypr,;pertywith
respectto summation as wellas integration,

m,l

E 'Tj (x_) Tk (Xa) --0 j _/k : "',
a=| '

';\ (3-253) :
"" m+l

m+ 1 j : k, j, k <m + 1Tj (Xa) Tk (xa) - 2 "'"

a=l ,,

This propertyisderivedirom thecorrespondingorthogonalitypropertyofthe

cosine functions andmakes itpossible to determine the c ) from , ,

m+l

'2Cl :: _ Yi T1 (Xs) (3-254a)m+l
i_-I

W ,
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1
m+l

-cj m + 1 Yi Tj(xi)' j : 2, 3 ..... m + ] (3-254b)
if 1 .:

Once the coefficients, c j, of the linear combination of Tj have been determined, ,
Y (x) may be conveniently transformed into the equivalent Chebyshev interpolating
polynomialin [1, -1]

m+!

Yr"(x) : ZI bi x i-1 (3=255) ,

as follows.

Let '_'

: (-1) i+1 - - (3-256a) ' ,'.alj c2i.l j - I, 2, , (2j I)<m , ,
i..>..)

a 1 : 2i=2 ci i : 2, 3, , m + 1 13-256b)

{and

i '
aij = C[i+2 (j-l)] [2ai-l,j -ai,j-1] i : 2, 3..... [i+2(j-1)]<m+l (3-256c)

_ °.'
J

j : 2, 3..... [i+2(j-l)]<m+1 I

i '
Then, the coefficients, b: oi the interpolating polynomial can be determined from

bi : ? i aij i : I, 2, .... m + I

j : I, 2.... , [i+2(j-l)]<m+ I (3-257)
f

Finally, the polynomial so determined car, be used to interpolate in _he interval

:, ItI,t+ I] by means ofthetransfor_,atlor,ofvariablesdefinedby Equation
(s-2,t.6).
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_ .-_._-._,_ ................ mln _ mm n = 1

_ The present version of GTD8 can handle any of 10 bodies, one of which is the I

central body. A solar/lunar/planet,_ry file by Cbeby:_hev approximating poly-
nomials is generated covering the entire time intercal of interest. The file

:i contains volynomials for each component of position and velocitT and for each
element of the matrices which transform from the selenocentric true of date to

the selenographic coordinate system and from the mean equator and equinox
of date to the true of date coordinate system, as required by the application.
The file also contains coefficients for the equation of the equinoxes, _H, used

to correct the mean Greenwich sideral time as given in Equation (3-19).
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CHAPTER 4 _,

PERTURBATION MODELS AND VARIATIONAL EQUATIONS }

For orbital prediction using the method oi sp- !al perturbations, the equations c,f
motion of the satellite are in'.egrated m_merlcally. The perturbing acceleration
vector is required to construct these equations, which are presented in Chapter 5.

The sources of these r)erturbations are identified and the appropriate perturbatiop _
models presented in this chapter. The perturbations discussed include: :'

• the gravitational acceleration due to n-point masses, Rp. _.

• the gravitational acceleration due to nonspheric!ty of the

gravitatiotm_potential,RN_"

• the acceleration cue to the mutua|.nonspherical gravitational _:

attraction of the earth and moon, R xo //i

,_} • the acceleration due to aervdynamic forces, R v :_

l "' !
• the acceleration due to sclar radiation pressure, Rs_ .{

• the acceleration due to thrusting of the spacecraft engines, tlT '
:..t' ;

. • the acceleration due to attitude contro_ system corrections, RT_c .,

_ • model r4:placement accele,'a_ions, R A ..*.

\ _i All or any subset of these effects can be included :n the perturbing acceleration ,
vector which is used in the construction of the equations of motion using either
tk _ Cowell or Variation of Parameters formu!ations. _ _

E; The partial derivatives of the current state vector with respect to the initial _ ,
state vector are required in the differential correction process. The._ partial _ _i

_ derivati,-es, whic. c..,s_imte the _a_ _.... sit.on matrix, can be _t)tained by f /"'
numerically integrating a system of variational equations in conjunction with the
Cowell orbit generator. The construction ol these variational equations is dis- ]
cussed in detail for each of the perturbing accelerations, Accelerations which °

are included in the equations of motion, but for which the e_imation process is _

iinsensitive, can be omitted in the constructiJn of the variational equations.
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_i A method of computing the partial dem_-at_ves analytically is discussed in Section

: 4.10. This analytical approach is alway_ used in the differential correction pro-

cess in GTr.d when the Variation of Parameters or Brouwer orbit generators are

: .reed, and is optional in the Cowell differential correction process. !

t

4.1 TOTAL PERTURBATION MODEL AND VARIATIONAL EQUATIONS

" The total acccleration vector is the sum of the accelerations induced by each of

the sources listed above (expressed in an inertial Cartesian coordinate system,C

i.e., mean equator and eq_finox of 1950.0 or true of reference date.)

:- R = RpM + RNS+ RIO + R D + RsR + RTA c , R T. (4-1)

, The total perturbing accelera+ion vector is usuglly defined as the total accelera-

tion excluding the poir, t mass gravitational acceleration caused by the central

: body.

d

*"_ The Cowell equations of motion of the satellite may be written in the form .y/ ,_

"' (4-2) lR = f(R, R, t,_)

where

_ column vector of vehicle position coordinates

_ "- vector of dynamic parameters of dimension _

J
and "'_

i,

2-

= (_(t0) ' R(t0), _*)T (4-3)

where

15" _ constant model parameters pertainin_ to drag, gravitational
harmonic coefficients, etc.

t

, '. The model parameters p, which may be include3 in thc variational equations, i

are as follows: !

4-2
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V • Position and velocity of the spacecraft in mean of 1950.0 coordinates,true of date coordinates, classical orbital elements at epoch,

spherical coordinates, or DODS variables

• Gravitational parameter of the central body

• Harmonics of the central body
• Gravitational parameters of perh_rbing bodies

• Aerodynamic drag parameter

• Solar radiation pressure parameter

• Powered flight parameters

• Attitude control parameters.

;, These parameters are determined in such a way as to reduce the differences

between a computed and an observed orbit. This orbit detecmination process
_:
[ requires the computation oE variations in the s_ate variabJes, R(t) and R(t), as:r

functions of variations in this parameter set.

_:_ If Equation (4-2) is differentiated with respect to I5, the matrix equation

l

L
_:- " is obtained. If time t and the parameter set p are independent, the differentiation

_: with respect to t and p may be interchanged to give

Defining the matrices

!' A(t) = _(t C(t) : '

_,_i: B(t) = (t Y(t) -- _.-, LTJ k_,', 3x 3 3× _', "

_:

: 41o
5;' 4-3

L
_5
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Equation (4-5) takes th_ form of a system of linear differential equations

= A(t) Y + 3(t) Y + C(t) (4-7)

called the variational equations.

Just as the basic Equation (4-1) is numerically integrated to obtain the position
(t) and velocity 1_ (t) of the satellite, the variational equations are integrated to

obtain the matrices Y(t) and Y(t), which yield the required partial derivatives.
These partial derivatives are used to form the observation partial derivatives

required for differential correction oi the orbit. This application is discussed in
Chapter 7.

The matrices A, B, and C are formulated for the ca,-;e where R is of the form

given in Equation (4-1)

. i _RI_: _RNs _R D _R SR °RTAC ORT
, A- +_+_ +---+_ +-- (a)

"-2"

_RD
.x. B = ---r- (b) (4-8) i

F [o '= ' - = 3' 03' -- (c) '
c =,,75/._x_,_ L_ _._ _-Wp'_lo_,,c,, ;_'J

where

03" 3× 3nui1 matrix

_R
columns of explicit partial derivatives oi acceleration with respect

P to model parameters:
" Z..t" "...t" "_.t"

"-. -_r_ _RpM _RNs'-'_'PM

?_ ' b_k ' ?_C_ .. etc.

4.2 POINT MASS EFFECTS

To first ordcr, the gravitational attraction of a perturbing body of mass m can
be approximated as that arising from a dimensionless particle of mass m located

at, the center of mass of the body. An expresston for the perturbing acceleration
_xlstng from n-point masses is developed in _is section.

t

4-4 '
REPRODUCIBIJ_ITY OF "t_IB ,_
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4.2.1 N-Point Masses Perturbation Model )
}

In the development of the perturbation model for the gravitational effect of n-

I massive bodies, the startingpoint is Newton's second law of motion and law of

gravitation(References 1, 2, 3).

The second law of motion for a body of mass m, acted upon by a force F, is

_: given by

(
-_ _ i

dt d-t-) (4-9)

i which reduces to
_ d2R
F = m- (4-10)

_::, d t 2

t when m is constant. Here R iu e vector from the center of an inertial coordinate
i

system to the satellite. .,'

The gravitational force acting on a satellite of mass m due to the attraction of
4

a body of mass m k , which is assumed to act as a point mass, is giwm by

Gmm _

Fk- _p (4-11)
• R3

kp

where G is the universal gravitational constant and Rk the vector from theP

body k to the satellite (see Figur_ 1-1).

In order to obtain the _ota! contribution from all perturbing bodies, a summation

over k is performed

fl

• R 3 Rkp" (4-12)
k=l kp

.' When this expression is substituted into Equation (4-10), the acceleration exper-

_ ienced by a satellite attracted by n-point masses is obtained in an inertial
coordinate system

,,L d"_ _-_ G% _
:.....// (4-13)(it 2 R3 RkP"

k=l kp

: _ 4-5
_g}.
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For convenier, ce and ease in the interpretation of results, it is advantageous to

: refer the motion of the satellite to one of the perturbing bodies. The force on
body j, the refer_.nce or central body, is given by

_-_Gm P'_ (4-14)

r_ i

Fj =
k=l Rk3
k_i

where m R is a vector from the reference jth body to tile k th body. The accel-
• eration of the reference body with respect to the inertial coordinate system is

• given by

d2R _ _ G_ R (4-15)_J dt 2 Rk3

m (SATELLITE)

mk,.._--_-_J _ m, (REFERENCE I

i NF_:RTI,_ k
C,3ORDINATE

,. s_,'STEM

Figure4-1. Schematicof Paint Mass Gravitational Bodies

A sttbtractior, of Equation (4-15) from Equation (4-13) yields

' - - _ (4-](_)
dt 2 dt 2 R3 _p _ kkp = R3

f

4 -6
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Substituting R - Ri = _ = R'p and Rk, = R - Rk into Equation (4-16) yields the
acceleration due to n-point masses

"-" d2R _" E (P'k - R) P'k (4-17) _RPM=_= - --R + /_k - --
dt 2 2 3 II 3

kSj

RPu ' fi' and Rk are expressed in mean of 1950.0 coordinates or true ofwhere

reference dake coordinate whichever is the basic coordinate frame. The gravi-
tational parar eter _ is the product of the mass of a given body and the tmiversal

gravitat!ona, constant. In particular, _k =Gm k for the k th body, and/_ = Gmj
for the central body.

When only the effects of _he central body are included in Equation (4-17), an
analytic solution can be obtained. This solution is the basis for construction

of the Variation of Parameters methods which are discussed in Chapter 5.

Special perturbation methods arc raquired for orbit propagation only when

additional perturbation effects are considered. Consequently, the perturbing ,,
acceleration vector does not include the first term on the right hand side of ,_-""
Equation (4-17).

,_ _. When the satellite is in a close orbit around the reference body, significant round-
off errors may occur in the computation of Equation (4-17) due to the differencing

of nearly equal numbers. When the earth is the central body, this error has not
been found to be significant. However, it may be important in the computation

_,, of third body effects due to the earth when the moon is the central body. This
difficulty can be removed by rewriting the equations of motion in a different,

_ but equivalent, form.

Designate iRkp I by rkp, IRkl by r k, [RI by r, ond the included angle between

i R R k by ;
and then

rk_p= r 2 + r_ - 2rr k cos e_ (4-18)

The ratioI/rkp can be expanded interms of Legendre functionsas i

_,
_': 1 1 1 _B
_'_,. _ =__ {P0(cos ::) + P1(cos _'_ h _ P2(cos,_) h_ _..._ ": ._ (4-]9)

:,' rkp r k r k

4-7

|
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" where
r

h--_

r k
2

B=_ Pj(cos 8)h j :"
• ' j,'l
' w

_ Substitutionof the exp_ansionof the numerator I/iRk - R t3 = i/rk3p= (i+B)3/r

. • _ and the rel_ior_b.ip It k = R - _kp into Equation (4-17) yields

• "-" d2R /_ (4 -20) ;• rPM - _ _ + _, .-£_p
.: dt 2 r 3 . IRkl 3 -:

k-_j

? i This procedure eliminates the numerical diffculty.The series in h is truncated

:_ i by terminating the series when h_ =<eh, where eh is a predetermined tolerance.

_. _,_ ! 4.2.2 Associated Partial Derivatives .."_- .I

The associated partial derivatives are given by

"" ( _ " ) I/'_R_ _I, _k - _ -RTI) "_["8RPM - _---+ -- I + 3 + _ _--_; (4-21) :?R R3 IRk RI3 \ Rs k'.l
,_ k a 1

?Rp u
_ = 03 (4-22) ::

t 7

: , where _' is the Identity matrix of dimension three. -.
\,

The associated C-matr_'_ columns fcr the model parameters :-,and _. are .,::.
given by ,

?RpM

b_ I_ (4-23)

IA gA __ _ _ ,_-._,

?
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4.3 NONSPHERICAL GRAVITATIONAL EFFECTS

Most solar system bodies are known to have figures which depart from the
spherical model of the particle. The nonsphericity of the gravita*.ional potential

may give rise to a significant perturbation of satellite trajectories. Therefore, i
accurate orbit determination may require the inclusion of nonspherical terms, i
The gravitational potentials of the earth and moon are the best known of all so_ar

system bodies, because of extensive tracking and analysis of close earth and
lunar satellites. The figures of p}anets with natural satellites are known, although

less accurately, through study of the motion of their natural satellites.

4.3.1 Nonspherical Gravitational Perturbation Model
i

The next perturbation considered is that due to the nonsphericity of a massive

body. The metbod of representing its potential is classical and may be found in

numerous publications (References 3, 4, 5). The gravitation_l field of the body
is derived from a scalar potential _/ that satisfies Poisson's equation

V2_(r, ¢, )_)-- 4_kp(r. _, ;k) (4-25)

where r _ the magnitude of the vector from the bodyVs center of mass

_) to the satellite

"- ".he g_ncentrie, se!enocentric, or planetocentric latitude

;__ the geocentric, selenocentric, or planetocentric longitude (measuzed
east from the prime meridian) i

Above the surface of the perturbing body, the mass density, _,, is zero; i
consequently, Equation (4-25) reduces to the Laplacian, _'2_, = 0. Standard

_ separation of variables technique yields the solution ; ,

n---!
(4-26)

+--r P:(s in 4) [Smnsinm& + __, cos ,
n_l m=l

4-9
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_vherethefirstterm is thepointmass potentialfor Keplerianmotion and the

second and thirdterms are thenonsphericalpotentialdue tothe sum ofzonal
and tesseral harmonics respectively.

_ _ the gravitational parameter of the central body _
I

?

! Re _ the radiusof thebody (usuallytakenas theequatorialradius) :.

pm _ the associated Legendre functionn f

Snm,C_ _ harmonic coefficients, i.e.,
rl _.

• zonal harmonics for m = 0

• sectorial harmonics for m = n

_ • tesseral harmonics for n > m ¢ 0
L

(note: J =-C O)

J _
The term n = I isusuallynotpresentwhen the originofthe coordinatesystem

: is placed at the center of mass.

The total gravitational force is the gradient of _; therefore, the noncentral
; force actingon thespacecraftdue tothe attractingbody Js thegradientofthe _

1' nonsphericalterms inthepotentialfunction_. _ _
)

i Expressing the gradient in body-fixed coordinates (Figure 4-2), the following form
forthe inertialaccelerationvectoris obtainad(seediscussionfollowing'Equation

(4-38)). ._

: ax b

-- ] _b _._r_ T _D [_,_ _T _ (____. _T (4-27, '

[j .
The partialderivativesof thenonsphericalportionof thepotentialwithrespect "._
to r, _, and L are given by

2 o '3_k_ 1 g (n_l) (Cnm cos mL+ S_ sinmX)P"(sin_) (a)
_r r r :_

n"2 m_'O

_q: - _ (CnCOSm_ inm\) [Pn_+_ (s inc)-mtan_l_n(S in_,)] (b)(4-28)_'t r n
n=2 m=O

?

2¢)23_ .. _ m(S_ cos m,_ - Cm sin m\) Phi(sin ;). (c),)_ r '_
n=2 m_O

4-!0
!
1
t

2
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Figure 4-2. Body-Fixed System

The Legendre functions and the terms cos m,% sin m },, and m tan 4; are computed
ria recursior, formulae:

P°(sin¢) = [(2n- 1) s in vP°_l(s in ¢) - (n- 1)P ° (sin¢)]/n (4-29)n- 2 ,,,'P

Pm-l(sin¢) m£O, m<n (4-30)
:_..), P_(s in 4;) -':-Pmn-2(s in 4;) + (2n - 1) cos _ n-I

,'_-l_(sin;c) mY0, m=n (4-81)P_(sin ¢) = (2n - 1) cos _, n"

where

pO(sin qO -- 1, p°(sin _) = sin ¢, P_(s In ¢)= cos ,;r, (4-32)

I sin m)_ = 2 cos ,\ sin(m - 1) .'. - sin(m - 2) _, (a)

(4-33) _
", cos m\ = 2 cos _ co._(m - 1) L - cos(m - 2) \ (b) ,

m tanq',= [(m- 1) tan J.)_ + tan ;t, (4-34)

The recursion relationships above are the most efficient method of computing

the complete set of associated Legendre polynomials and spherical harmonics

up to a certain order and degree. However, higher degree harmonic terms can

cause satellites with repeating ground tracks to undergo large perturbations s

when _e trajectory and the harmonic frequency are synchronized (resonant).

The synchronization causes the satelliteto sample the gravitationalfieldin such

a way that large cumulative perturbations result. Individual resonant harmonics i

can be computed in GTDS without using the recursivc algorithm described above. I'

!
A

I m ,'
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Use of a low order recursive harmonic model with nonrecursive computation of t ,

higb order resonant terms is considerably more efficient than carrying out

: recursive computation of the total high order harmonic model. :

(
The partial derivatives of r, 9, and k with respect to Xb, Yb ' and zb are computen .- _

- from the expressions , *

,: - - (4-35',
.,: b'_b r
C

_k _ 1 [Xb _Y___b_ byb3: 2 b-Fb Yb (4-37)_}-b (Xb2 + Yb )

where

• ' _Xb _Yb dZb

, . , -_, and _ t

are the row vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively.
1

: Substituting Equations (4-35) through (4-37) into Equation (4-.27) yields

= _ !, (a)

'\ /" 2

" " : + <°>'b 5r r2 <J_

where a_ b, ay b and a,b are the components of the inertial acceleration of the
spacecraft expressed in the body-fixed coordinate system, and not the accelera-
tion withrespecttothebody-fixed coordinatesystem. Thus, itisnecessary ;.
to transformthesecomponents intoan inertialfrmne beforeintegratingthe

equationsofmotion.

Sincethenumericalcomputationsoftheprogram are calculatedinthe inertial
mean equatorand equinoxof 1950.0coordinatesystem, a serieso[ transforma-

tionsare made to representthe srcelerationvectorinthissystem. For the

N

4-12 REPRODUCIBILITY OF
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case of theearth,_ere are two optionsavailableto accomplishthis:thefirst

isthe more accurate,whereas the secondis computationallyfaster.

For themore accurateoption,theinertialaccelerationELbexpressed in body-
fixedcoordinatesistransformedto theine_._almean of 1950.0axes by means
of the transformatlov i

RNS : CTBTa b (4-39)

where B T transforms from body-fixed to true of date coordinates and C T from
true of date to inertial mean of 1950.0 coordinates as discussed in Sections 3.3.]

and 3.3.2. The matrix BT accounts for polar motion and Greenwich sidereal
time.

The simpler optionneglectspolar motionby assuming the geographicpolezb
to be aligned with the spin axis z in the true of date system. 'this allows the
nonspherical gravity components to be expressed directly in true of date co-

ordinates. Thus. by r_plac_g (r_, Xb, Yb, Zb) in Equations (4-27) and (4-35)
through (4-_,8) by (r, x, y, z) the true c.f da_e components are calculated directly.
The longitude and latitude are calculated as follows

= _ - _ (4-: 0) "_'/_"'
g

.L.,
_ ; s in -1 _r) (4-41)

where

a _ the right ascension of the spacecraft, a = tan -1 fy/x)
l

a _ the rigb* ascension of Greenwich. ig

Computation of the accelerat'mn due to the nonsphcrical moon in 1950.0 coordi-

"- nates requires some different operations than those used for the earth. The 1
right ascension of the Greenwich meridian has no meani_ff, so t}',at the etep of

going from body-fixed coordinates to the true of date system cannot be implemented. "_

|
The lunar body-fixed coordinates (also known as selenographic coordinates) are
coincident with the principal axes of inertia and are defined in the following way:
the x' axis lies along a direction nearly colinear with the moon to earth vectnr;

the z t axis lies along the axis of rotation, or polac axis, of the moon; and the y'
axis lies in the effaatorial plane of the moon and completes a right-handed coor- :i.
.dinate system°

4-13 _
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_ Three rotations are necessary to transform the selenographtc acceleration
• vector to a vector referred to the mean earth equator and equinox of 1950.0
{

system. The first rotation takes the acceleration vector to the true earth

=+: equator and equinox of date coordinate system centered at the moon (selenc_

_+ centric). The other two rotations involve the precession and nutatlon effe_s
that are included to _xpress the acceleration in the 1950.0 system. These rota- s
tions are discussed tn Sections 3.3.1 and 3.3.3.

_. 4.3.2 Associated Partial Derivatives
f

_! Th_ partial derivatives of g_ with respect to _ are obtained by differentiatLng
: Eqaatlon (4-27) yielding

' i

The required parttal derivatives of _/br, 0_/?_ and ?J?% with respect to l"b _ ,} ,
are obtained by dtfferentl_'_ing Equation (4.-9.8) as follows '- _,

_" -+'+v _:+q.,_q_- _I._l

• _r _r--'2" _r_¢ _r_. l

+" __...+_ = ___'q_ __-_:+q"_:% __+",_-- (4-.4.":J) +

+' _7b k?,l ?g_?r ?,y>2 ?+?)_ l_---_b]l +Tb i'+'
" -- i

In order to minimize computations, the symmetry property of the second partial I

derivatives of _ is utilized as indicated below i

' t _

I

. +p,.r--..... +, "a_. " + ' ........... 3wT_ _ _ II mmm m_ r
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21.'-')nL?20/ /_ (n+ 2) (n+ I) (Cm cos mk 4 Sm :in._l P_(sin_) '{- i
?r 2 ra n n -_n " 2 m'O

2?2SO- "Saga= -/_ (n + 1) (C_ _os m:<+ S m sin re)v) i
?r ?_ ?_r r a n='2 mffiO

#

x [Pm+l(sin _) - m tan CP_(sin _)] ,,1

co n -}
e'

Eaag' - a2q - Y" E (n+ 1) m(S2cosma-C2sinmZ)P_tsinq., )?r_% B)vBr r 3 \r Inffi2 m=O

?2_P-_E (Cmcosm), +am sinma){tanCpm+l(sinqb3 (4-44)
_(_2 n'2 m'O

+ [m2 sec 2 q_ - m tan 2 qb - n(n + 1)] P[,uin q_)}

2 '
n _.,,. '_

b2qa _ 3a_O _b_ m(Snm cos m_.-C m '_inm)v) (Pnm+t(sinc_)n

._ nm2 m=O

- m tan 4)Fnm(sin _))

_2_o _ _* 2 m S m P_(sin,_)..... m (C cos mk + sin m)v)
-Ok2 r " !

n'2 rnIO ,_'

The partial derivatives of r, _, and k with respect to r b are given in Ecraations
(4-35) through (4-_,7). The required second partial derivatives of r, ¢_, and x

with respect to F b are obtained by differentiating Equations (4-35)through (4-37) a (

with respect to Y , yielding _ ib

_2 r 1 7b-f °'"

= - (4-45)

._ _ 7] ' :

!

i! . J

• .)

;%
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72_ 2 ?Xb 3Yb _ 1 0 0 (4-47)

- + Yb * (Xb2+ yb2)
0 0 '

where _,:_b,/kYb, _-yb/brb, and _Zb/0_, are (1, 0, 0), (0, 1, 0), and (0, 0, 1),.#
respectively.Y

• The symmetry properties of the second partial derivatives of r, ¢, and k yield
"_ ,,P ."

_2 _2 _2 32 A _2
- , - , = _. (4-48) ,.

"dXb:'Yb CYb _Xb ('_Xb I')Zb OZb _)Xb "Yb aZb "_Zb 7Vb !

As noted previously, the lcotential function _, satisfies Laplace's equation, ._2...._ 0.
Therefore,

_2V' + (4-49)

2 \3y_ _'_z_ _ _'__)x b
i'

- In view of this and the symmetry of the matrix in Equation (4-43), it is necessary ,:

to compute only the three elements above the principal diagonal and two el::ments

on the principal diagonal.

The equations for computing the elements of the C-matrix appearing m the i
variational equations (Equation (4-7)) are obtained by differentiation of Equation

(4-27) with respect to C_ and Smn

'% _,,- , ,_/ , 4X (4-50)

_Cm ,_Cm \ ._r,, -- ;.,C m .,C m \#\] dr bn n rb n rl, n

T

_,i_O_UCIBILIrY OF TIlE i==I _
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i ° :where the second partial derivatives of W are obtained by differentiating Equation !
¢_ (4-28) with respect to C" and S _ - t• n rl

i 1

_/_r - " (n + 1) cos mkP_(sin_)

r3_b,/?(_ [= bL e [P:+I(s in _) m tan ,;_P:(s in _)] (4-52)_ cos mk -
;: _C m .

,_" n

: _, ?,_/?,\_ - m s i n mhP:(s i n q.)

r" - -

•;° I_V_/?r _1(n + 1) sinm,\P_(sin(_)

r

., b 15V_/_¢- = (_) sinm)_[P:+l(sin_)-m tancP_(sin¢)] (4-53)

_b/Sk m cos m,_P:(s in _) ,"
,&J

• " As in the case of the accelerations due to nonsphericity that were developed in

. " " Section 4.3.1, the partial derivatives for use in the variational equations must be

} transformed from the body-fixed axes to the iner_.ial mean of 1950.0 coordinates.
, As discussed previously, these transformations can be determined to high pre-
:. cision, or by a simpler and faster method in which polar motion is neglected. ,:

: In the mor_ .accurate option, where polar motion is accounted for the transfor-
i: ".:2." '

mations of the partial derivatives of RNS with respect to R ave determined by
taking partial derivatives of Equation (4-39) as: follows i

k ._.
_ _ - (BC)T _ BC (4-54)

The matrices C and B are presented in Sections 3.3.1 and 3.3.2, respectively.

i
: In the simpler option, polar motion is neglected and :a_,, as well as its partial
: derivatives, are calculated with respect to the true of date coordinates. This ,

is accomplished by replacing (r b , Xb, YU, ZU) it, Equations (4-39), (4-42), (4-43),
and (4-45) through (4-49)' by (r, >., y, z), the true of date coordinates, and by

replacing tim matrix B with the identity matrix I in Equations (4-39) and (4-54).

t
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The partial derivatives of R_s with respect to model parameters C: and S:
are obtained for the more accurate option as follows •

. cab (4-55)
_RN¢ _ (BC,_T __

:

_RNs _b
= (BC)T (4-56)

For the simpler option, (r b , Xb, Yb' Zb) is replaced by (r, x, y, z) in Equations
(4-50)and(4-51),and the matrix B isreplacedby theidentitymatrix I in Equa-
tions(4-55)and (4-56).

: _ 4.4 INDIRECT OBLATION PERTURBATION MODEL _

i
/

Up to this point two types of gravitational accelerations acting on the space-
crafthave been considered:theaccelerationdue ton-pointmasses, measured •

relative to one of the point masses, called the reference body; and the acceler- "
• ationarisingfrom thenonsphericalportio_of thegravitationalpotentialsof one

or more cfthen bodieswhich directlyinfluencethe spacecraftmotion. These

nonspher:_alattractionsalsoaffectthe inertialaccelerationofthe reference
body,re,,:uiti,agm an indirectaccelerationofthespacecraftrelativetothe ref-

erence body (Reference6). The two bodiesofmos_ concern are theearthand
m oo}L

_ Inspectionof Equation(4-26)revealsthe rapidattenuationof thegravitational "

attraction with increasing order of the spherical harmonics and increasing

distance from the body. For the earth, C° (or -J2 ) is of order 10 -3 of the
Keplerian term, while all the other harmonic coefficients are of order 10 -6 or

less. In the moon's gravitationalpotential,thesizeof thehigheror_lerterm_

relativetothecentralterm islargerthaninthecase oftheearth,but the co
isdominant. Consequently,theonlynonsphericalpotentialterms considered
for the mutual interaction of the earth and moon are the second zonal harmonics

of each, and the resulting effects are referred to as indirect oblation effects.

The complex motions of the earth-moon s:y3tem, including lunisolar precession

and nutation, phymca, libration of the moon, and perturbations in the lunar orbit,
are accounted for in GTDS. Thus, any significant indirect oblateness effects are

4-18
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due to the use of a relative coordinate system (Equation (4-16)) in place of an {
inertial coordinate system, and not to errors in the lunar ephemeris.

Considering the moon to be the spacecraft, the force acting on the point mass

moon due to the nonsphericity of the earth is (Section 4.3)

pMP_(E) = f(C i , S J,, --rEM,t) (4-57)

where C! and S! are the harmonic coefficients of the earth's nonspherical

potential', rEM is the moon's position vector in geocentric coordinates, and t is
.*he time argument used to determine the orientation of the inertial and geocentric

_. axes.

i_ Similarly, th_ force acting on the point mass earth due to tile nor 2hericity of

the moon is

:f<c! - t) (4-5s) •' i ' rME' i #

where cJ and s J are the harmonic coefficients of the moon's nonspherical
• _ potential, _ME is the earth's pnsition vector in selenocentric coordinates, and t

_ . r is the time argument used to dete_ mine the orientation 06 the inertial and seleno-

_. graphic axes.

? .. :
: The force ac_i-_ on the point mass moon due to the earth's oblateness, _MRM(E),

i produces an equal and opposite force acting on the earth. Therefore, the inertial :
acceleration of the earth due to the force of attraction between the earth ana i

moon due to the oblateness of the earth and the point mass moon is _

: i E(E)= --- RM(E) (4-59)
. _IE

_ Similarly, the force of attraction between t_e e_rth and moon due to the oblate-
_ ness of _',e moon and the point mass earth produces an inertial acceleration of

the moon given by

f _M(M ) _E "': - _ RE(M) (4-@0)
?. /_ M

/
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Therefore, the inertial acceleration of the earth due to the oblateness of the
" earth and moon is

Rz =R_3 M) +Rz (E) =-_M M(E)-m E(M , l
#m

., and the inertial acceleration of the moon due to the oblateness of the earth and

moon is _.

RM= _M(E) • R.(M) = P'E _ _E(M (4-62)

The resulting indirect acceleration of the spacecraft is equal and opposite to the

j acceleration of the reference body; consequently, -

_'_ - Rz = _u _M(E) _ _ _E(M when the earth is /t '
_ _M the reference body _-"

-" IR.to _--_ (4-63) i

-RM'"= -_ [_'_E_M(E) _ 1__RE(M)7 when the moon is iI_ _M J the reference body

The method for determ!ning the inertial acceleration of the point-mass moon _.

due to an oblate earth, RM(E)uand the inertial acceleration of the point-mass

earth due to an oblate moon, R z(M), are presented in Section 4.3. However, ,,
since the effects of the higher harmonic terms can be neglected for this appli- : ,_

\ cation and only _he second zonal harmonics considered, the gravitational potential

in Equation (4-26) reduces to "

0 (4-64)
qa(r, ¢1 = _._ C_ (3 sin a _ - 1)

<
The partial derivatives of 7' with respect to r and 4: are

¢,/J_ 3 _ , ReC_(3 sin _ __ l)

?r 2 r4 (4-65) _

_b_ ; R C_3 sin_/ cosct,
_¢' r x _,.
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and the partial derivatives of r and ¢ with respect to _ are_ i
- sin ¢ cos _-- I

r TT 8¢ 1 (4 -66)
- - -sin_sink

_ r _¥ r cos _ i

_ cos 2 _

Since the oblate potential model is symmetric about the pole, and neglecting
polar motion, the inertial acceleration of the point mass moon due to the earth's
oblateness can be expressed in geocentric true of date coordinates

T(Z)

_'rM/ k _'rM /

a T. ° i
=-'2 4 Rec°(asin2_M- I)--+ sin¢_; sinA (4-67) : /#

4 COS c_M " _.-rM r M
rM o .,

COS- _LM
!

where _E "_the gravitational constant of the earth

i R _ the equatorial radius of the earth

C° _ the second zonal harmonic coefficient for the earth
#

"_: YM_ the lunar position vector in true of date coordinates

,, _: CM"_ the geocentric latitude of the moon .

_ k. "_ the right ascension of the moon i_: true of date coordinates '

_, The acceleration vector _ is transformed to inertial mean of 1950.0 coordi-(E)
nates via _he transformation matrix CT of Section 3.3.1.3, i.e.,

R M(E) = CT aM(E) (4-68)

rhe inertial acceleration of the point mass earth due to the moon's oblateness

is expressed in selenographic coordinates as

_ _
2

_' _E(M) : 3 t:M 3"M R.,c°
r-_R_c,O(3sin2 1) r_ t sin sink '4 cos /E (4-69)E IE rE

c°s_ '/E

$
'i 4-21

, :J

' , ...... I _I

1976017203-141



where _- the gravit,_,tional constant of the moon/x M

_- Rm_ the eq,mtorial radius of the moon

c ° "_ the second zonal harmonic coefficient for the moor :

•: _- _ the position vector of the earth in selenographic coordinates ,
_ E i

. ¢_: "_ the selenographie latitude of the earth

_. " h E _ the se!enographic longitude of the earth

Transformation of g._(M) to inertial mean of 1950.0 coordinates yield_
t

RE(M) - CTMT_E(M) (4-70) .,

i ,_ i where the M T matrix transforms from selenograph_c to selenocentric true of i :
_ i 1 date coordinates (Section 3.3.3), and the C T matrix ;ransforms from true of I

_ : j date to mean of 1950.0 coordinates. If a true of re_erence date inertial system ' /,; is being utilized, then the C T matrix in Equations (4-C,8) and (4-70) is set equal I " "
to the identity matrix. '

4.5 AERODYNAMIC FORCES AND ATMOSPHERIC MODELS

4.5.1 _ntroduction

The modeling of the aerodynamic force acting on a spacecraft in a near-
ear'.h orbit is difficult from two standpoints. First, the characterization of the
deL,sity at very high altitudes above the surface is extremely complex. Although "}

\ the exact natures of the phenomena are not well understood, there is experi- :
:' \ mental evidence that diurnal and seasonal variations, as well as effect_ due to

changes in solar flux and geomagnetic activity, can be modeled with some degree ._'=
of success.

Atmospheric density models can be divided into two types. Models of the first
type are characterized by their dependence on altitudc and their independence _:'

of any other parameters. Those of the second type are characterized by their : !_
_ dependence not only on altitude, but also on the position of the sun relative to ' :

the earth and the amount of energy emitted from the sun. :i
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Several atmospheric models have been constructed over the past se,,er_l years

(References 7-14) to account for various geomagnetic and solar activities. There

are three main types of sohr radiatign known to affect the atmospheric density.
The first type, which is the most important in terms of the effec_ on the structure

of the atmosphere, results from solar ultraviolet radiation impinging on the {
atmosphere; its effect on temperature and dez,_ity is maximum two to three hours : ,

after loca._, noon. This r_diation heats the atmosphere by conduction and theceby
increases the density at higher altitudes. The process is known as the diurnal

(or day-night) effect and causes a redistribution of density, resulting in a diurnal

bulge in the atmosphere. The second type of solar activity affecting the atmos-
phere results from extreme ultraviolet radiati(m. The atmospheric oscillations
that are in phase with this solar flux are often referred to as the erratic or 27-

day variations, since the oscillations sometimes exhibit a semiregular character
fcy intervals of several months, during which a period of 27 days is easily

recognizable:. It has been found that the decimetric flux from the sun apparently
varies in the. same manner as the extreme ultraviolet emission, and can therefore

be used as a fairly reliable index of short-term solar activity. The decimetric

flux, specifically the 10.7 cm radiation, is expressed in units of 10 -2` watt/m2/

cps bandwidth and is denoted by the symbol F10" 7 • The third type of radiation
is corpuscular in nature and is referred to as the solar wind. It is responsible ,_
for the changes in intensity and energy spectrum observed in the cosmic radi- _1

:_ ation and is the largest single factor affecting short-term fluctuations m theatmospheric density. Experiments on board Pioneer V were the first to establish
that the ll-yeaz" solar (sun spot) cycle is a phenomenon that is not localized near
the earth or its immediate environment but rather affects large volumes of I:he

inner solar system. The solar wind is modeled as an interplanetary plasma
streaming radially and irregularly outv'ard from the sun, compressing the earth's

Ca$ '

_:: magnetic field on the sunward side and extending it on the night side.

_ Atmospheric oscillations connected with geomagnetic storms are of significant _,
\, _! amplitude but of very short duration (one or two days). Present-day studies '

indicate a correlation of atmospheric density with geomagnetic activity.
i:

Apart from the difficulty of accurately representing the environment (density) '

at the spacecraft location, _he second aspect of the problem l'c_ in _he complica-

•.ionofrigorouslymodelingtheforceitselfas a functionof spacecr_t configura-
tionand atti' _e.

_. GTDS provides the user with the choice of two atmospheric density nmdels and

i three types of force representation. The atmospheric density models availab'e
are the Modified Harris-Pries_er and the Roberts analytic formulation of the

Jacchia 1971 model. The Harris-Priester model is the simpler of the two and

permits the most rapid computation of density. It does not include effects due
to seasonal variations or to changes in solar flux or geomagnetic activity, as

_; _ does i,_._ Jacchia-Roberts model.

_, 4 -23

1976017203-143



,' j

lllii i" llli i - il.b

The aer_lynamic force ,.an be represented, at t'ae specification of the user, as ]

• a simple drag force acting along the relative wind vector on a spherical
_ spacecraft

" _ a force with components normal to and along the axis of a cylindrical i
: spacecraft

• a force with components along each of the three spacecraft body axes for
a configuration consisting of a cylinder with solar paddles oriented at
some ,angle to the axis of the cylinder.

These modeling options are described in det dl in the following sections. The

: aerody,amic force modeling is discussed in Section 4.5.2, the J_cchia-Roberts
atmospheric model in Section 4.5,,4, and the Modified Harris-Priester atmos-

" pheric model in Section 4.5.6.

4.5.2 Aerodynamic Force Modeling

•_ Rigorous treatment of the aerodynamics of free molecular flow involves the

_' representation of the compiex interaction of the atmospheric molecules with
• the surface molecul.es of the spacecraft. Under certain conditions, this inter-

action is characterized as a specular or perfectly elastic reflection of the
impinging molecules. The reflection is termed diffuse when the impinging

: molecules penetrate the surface, experience multiple collisions with the body

:: molecules, and are re-.emitted randomly with no memory of their prior history.
In the case of specular reflection, there is no momentum transfer, and hence

no force, tangential to a local surface element. Diffuse reflection does result
in such a component of force, although it is small. In general, both types of
phenomena are involved to varying degrees, depending upon the details of su,'face '

', reflectivity and emi.ssivity, temperature, free-stream constituents and their• -_.

, mean molecular motion. Conditionstypicalof most actualsituationsresultin

forceswhich can be adequatelyrepresentedinterms ofthespecularreflecti_m
equaLions.Therefore,theforcemodelingin GTDS rr kes thissimplifying
assumption,and computes theforceactingon a localsurfaceelement as the
momentum transfernormal to thatelement.

The forces on all elements of the spacecraft surfaces exposed to the free-
stream must be resolved in some coordinate frame and summed in order to

' obtain the total aerodynamic force acting on the spacecraft. This resolution has
',', been performed for a number of elemental ohapes at various orientations. GTDS
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I w makes use of the force coefficients defined in Table 4-I for spheres, cylinders,

and flat plates. A force coefficient, C F , is defined as the nondimensional

quantity "i

F (4-71)

CF -__I ) '
2 pV2A i.

where !

F = the magnitude of the force acting on the object

/) = the density of the medium through which the object is moving i

V = the magnitude of the velocity of the object with respect to the medium i

producing the force

A = an arbitrary reference area !

The velocity of the spacecraft relative to the atmosphece is determined in the _ /tinertial coordinate system by subtracting the motion of the atmosphere, assumed _

to rotate with the earth, from that of the spacecraft

.j - i
V_, = R- =× _ (4-72) ,l

The earth rotation vector _ must be apI)ropriately defined in the inertial frame

(mean equator and equinox of 1950.0 or true equator and equinox of reference _I

date). )
l

For the ease of a spherical spacecrafL the drag accelm ation is computed simply i

\. using the general form of Equation (4-71) and C D = 1.0 from Table 4-1 ' ,

RD = _ Ss_,_ret l_rell (4-73)

where

#
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d is the spacecraft diameter, and m is the mass. If there is propulsive thrust

acting, the mass m is variable and is represented as a polynomial in the burn
time. The polynomial coefficients are assumud to be known inputs.

When the spacecraft configuration is more complicated than a sphere, it is

necessary to know the attitude, in addition to the orbit, in order to model the i
aerodynamic force.

It is not necessary to compute the entire direction cosine matrix Q when the ; .;
spacecraft is a cylinder (v_ith enclosing end plates). Due to the axial symmetry, ,L-

it i_ onlynecessaryto know thedirectioncosinesq11,q21,q31 ofthecylinder '_

axis.

l The unit vector ',

= qll T + q21]- + q31 _ (4-75)

then gives the axis orientation in the inertial coordinate frame. As indicated in ';;

Table 4--, the force component along the axis is p, oportional to the square of /
the velocity component normal to the end plates. The normal force compo- -/

. . nent is proportional to the square of the velocity _omponent normal to the

, ,. cylinder.* Therefore, the velocity relatbre to the atmosphere is resolved into
normal and axial components in order to obtaip the total acceleration for the _

cylindrical spacecraft as

ii
]

,}

• A=-SeXB(Y'_'Vre l) IXB'Vre i {4-76) _'
5

4

R D = ;(N + A) --
\

• This is analogous to the solar radiation case, where the force ms proportional tn the effective area
normal to the incident radiation (Section 4.6), and the determination of this effective area is

directly analogous to the determination of the effective, area normal to the relative velocity vector.

,j
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! In these equgtions . ]

;, 1 CNC 1 4 2LD

_ Sc 2" sin 2 3m

(4-77)

1 CN, 1 (_d2 / _d 2 :_se-7 - 7<27_-/- V
j- ,.

: where L is the length of the cylinder and d ts the diameter. As before, m is

the spacecraft mass, which may be variable. !,

The third type of spacecraft configuration option;ally available in GTDS is a
cylinder with solar paddles, mounted on trunnion pivots which are orthogonal to
the cyl'_'nder axis. The incidence angle i defines the angle between the axis and _ip
the paddle surface. The spacecraft axis system is chosen so the x-axis corres- _,_

ponds with the cylinder axis, y is the trunnion axis, and z is orthogonal to x and y. ,_ ,'

The y axisisdirectedso _hatpositiveip correspondswithpositiverotation ,
abcat y, according to the r_gh_-hand rule. . :

This configuration is not axisymmetric and therefore requires the calculation i "
e of _i_=complete transformation matrix Q (from body to inertial axes). It is most

convenient to trans[orm the relative wind velocity into spacecraft body axes,
c,Jmpute the force components in this frame, and then transform the result back
into the inertial coordinate frame. This leads to the following equations for the -:-

aerodynamic acceleration: _ _:

VN--_¢_sini +_, ros i ._

L

: F,s --- se_.)_l -s_vN%i si. i_
: (4-78) t _"

5,,- - so_ <_g;_._ ! ,

ZB P i
.. 1
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jv
• ,,v __.,..._._'-_"-'*_......... _f .q. and S. are the same as in Equations (4-77). The solar
paddle contribution is

1 C_p . 1 A Ap ':

S 2 c_s2 a. --" (4-79)\_s ;n

where the paddle area A is an input constant. '-
p ,-

The representation of the aerodynamic forces in Equations (4-79) does not con-
sider the effect of mutual shadowing or shielding from the free-stream flow _
between the cylindrical and solar paddle surfaces.* Such effects are geometri-

cally very complex, particularly if multiple interference reflections between
cyhnder and paddles are considered. The simplifications resulting from the

neglect of this phenomenon in Equation (4-78) are thought to ue consistent with .=

the original assumption of purely specular reflection in the specification of the
individual surface, type coefficients.

The factor p in the three expressions for R D is not simply the atmospheric ,,

dersity p. It also includes a scale factor
.t

_ (4-8o)
_,,; p = D (! _,/:,1)

to permit an adjustment of the _ C F product. A default value of /,_ = 0 is set

in the program. However, this value can be modified by user input, or it can be :,

estima:ed in ule differential correction process. Adju._tment of !'1 does _Lot

alter the instanta, eo_s dirv tion of RD ; it simply c;mnges :he magnitude.

"'" 4.5.3 Associated Partial Derivatives !

When the aerodynamic force op.tion is exercised in GTDS, it is necessary to

1

compare partial derivatives of RD w_th respect to vml.qtions in the spacecraft
local inertial state for use in the variati,)nal equatioi_s. For all configurations,

the portion, of the partial derivative which accounts for the effects of densityvariation is

_R D RD ,:..
- ,,4-81)

)

"Shadowingof thecylinderendplatesby thecylindrico',surface)tse:f is consldered.
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... since density depends only upon spacecraft iocal position and not upon local

._ velocity. The forms for ?p.!?P.. will be presented in Sections 4.5.5 anct 4.5.7 '
for the Jacchia-Roberts and Harris-Priester models, respectively.

All three forms for riD are expressed in terms of --V-el, which can be written
" in a slightly different form from that in Equation (4-72) t

(

VreI = R - _R (4-82)

where the matrix

=

Vr ' "PThus, the partial derivatives can be computed with respect to _1 and these ./
can then be used to compute

I
t_t" ,.

_RD_ ?R D

3R _Vre!
(4-84)

%

The partial derivatives of the three configuration forms with respect to V1 .

(xl' x2' x3) are "

Sphere: _ :

.. _ J ,

_RD = SsP Vre° VTe I + lYreII (4-85)

"d'Vre I _. IVrel I

Z
: ;

, RF RooUC mrr OZ i.i '
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I '
f4 ""
J_

Cylinder: , ,
4

• i -i

M 2 = ( x V el) " ( x Vrel) _ .

i: WI : (ql_l - 1) "_ + q]lq21"J- + qllq3lk ,

! ,(4-86) _

," W2 : q21qll T + <q2al - I) _- + q21q31k _

Wo = q31qllI + q31q21J + (q_1- I) k

4" 3R0 p ScMW i (W 'Vrei) + q, -Y_ '"

- " (i= 1, 2, 3) I •

} i :

_ '
: ¢

: ,)_

: F

f

•! ,[!
,, 4-31 ,,

] 976017203-] 5]



f

l

J' , A I.... | ............ _ i | _ ' ""

: !

Cylinder + Paddles:
3F

_ - 2 soI,_i * SpIvNisin2 ip

$ "

?Fx8
_ = 0

" _gB

" 5F

XB - 2Sp!VN] cos i sin i
_B P P

: 3F z
J YB

_ ?F F • 2 //
ScY BYB YB ._ ./

_" ° °2

OYB YB _Yg+ ZB (4-87) ]

_F
YB S _>B:_B

_F _F
zB xB

_Fzs ?.Fy_ _

?§B _iB .:

- S _ + . - 2Sp' ' "_v ,VNt cos 2 ip :

t:

3,Ro bWB
_ /,Q_ Q-I

)Vr eI 3VB

I

.,_.
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_ 4.5.4 Jacchia-Roberts Atmospheric Model

In Reference 13, L. G. Jacchia defined two empirical profiles to represent
temperature as a function oi altitude 9nd exospheric temperature. One profile

is defined for the altitude range _rom 90 to 125 km and the other for the region

above 125 km. Jacchia used these temperature functions in the appropriate ,
thermodynamic differential equations to determine density as a function of alti-

tude and exospheric temperature. He assumed that mixing is predominant
. between 90 and 100 km, and substituted the low altitude temperature profile into

the barometric differential equation for this regime. Diffusive equilibrium was
assumed above 100 kin, leading to the use of the low altitude temperatu:e profile?
in the diffusion differential equation for altitudes between 100 and 125 km and

the high altitude temperature profile for altitudes above 125 km.

Jacchia solved these differential equations by integrating them numerically over
the altitude regions for various constant values of exospheric temperature, as-

_ _ suming fixed boundary conditions at the 90 km lower altitude limit. He then

"i; tabulated these numerical results for use in the simulation of aerodynamic drag
: effects upon satellites. Most mechanizations of this model atmosphere in com-

puter programs have involved some means for storing the tabular data and for t
z**

interpolating values at altitudes computed by the trajectory integration and at -"

exospheric temperatures calculated by the Jacchia formulas. Although the
. . densities determined by this model are a_curate, these mechanizations are gen-

erally slow running and/or require large blocks of core storage. In addition,

the absence of explicit analytic expressions means that the drag partial deriva-
tives must be calculated numerically. :_

C. E. Roberts, Jr. presented a method for evaluating the Jacchia m)del analyti-
caily in Reference 14, and this formulation is used in the mechanization in GTDS.
Roberts found that the barometric and diffusion differential equations could be f

integrated by partial fractions, using Jacchia's low altitude temperature profile
for the range from 90 to 125 km. Above 125 kin, Roberts used a different as-

ymptotic function than _he one introduced empirically by Jacchia in order to
obtain an integrable form. Apart from difficulties of numerical computations

with finite numbers of digits, the Roberts analytic expressions match the Jacchia
results exactly from 90 to 125 km and to a close approximation above 125 kin.
The existence of these analytic expressions makes possible the computation of

analytic forms for the drag partial derivatives. Since the Roberts formulas
were derived for the Jacchia 1970 model, his constants have been adjusted for
the later 1971 model. In addition, an error has been corrected m the function

W(v) given by Roberts in Equations (12) of Reference 14.
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The computations bcgin _th cquations given in the Jacchia report to determine
the exospheric temperature and corrections to the standard density due to various
effects.

Before execution of a trajectory generation, GTDS determines the total 'ime span
of interest. Then, from a permanent data file, one set of values of geomagnetic
activity data and two sets of solar flux data are retrieved. The geomagnetic data
set is the 3-hour _eomagnetic planetgry index Kp. One set of the solar flux data

is the daily average 10.7 cm. solar flux, F10" _ , as observed at the solar observ-
atory at Ottawa, Canada; the other set is the 81-day running average (centered

at the day of interest), F1o._, of Fi0.7. the solar flux data are substituted into
the equation

Tc = 379 ° + 3?24_1o. 7 _ 1,:3[Flo.7 _ _1o.7] (4-88)

I

' for determining the nighttime minimum global exospheric temperature for zero
geomagnetic activity. The preprocessing computation of Equation (4-88) is done

_. for each day of the time span of interest, beginning one day prior to the start of s
/P

the trajectory. The daily values c_ Tc and the 3-hourly values of Kp (beginning .:j
6.a7 prior to trajectory start) are stored i_ a worldng file for use in the com- l

putation of the trajectory. I

At each trajectory integration time poim, the value of T¢ is retrieved from Jae
working file for the day before the current time. _ ,is accounts for the fact that
there is a one-day lag in the temperature variatio" with respect to _.,olar flux

change. This value of T is used to compute the uncorrected exospheric tem-
perature T 1 from the formula

.. T, =T¢ (1+ 0.3[sin2"2 _Y+ (cos2"2 v-sin2"2_)cos3"°21 ) (4-89)

whefc

1

t

2

= H - 37?0 _ 6?0 sin(H _ 43?0) (-._(..r<Tr)
l

. RFPRODUCIBILITY OF THI_,
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]

5s is the sun's declination, and i _

,1

(1 -f)2 (X21 : Xg),/ (4-90) i" ; _

is the geodetic latitude. The constant f is the geodetic flattening and X _, X2, X 3
are the components of the unit position vector of the spacecraft in true of date
coordinates. The -arameter i'.

. co -,
"-la°0.°L_Is,._-s_x,I sl+s__ (x_+x_)" ,

is the localhour angle of the sun (counted from upper culmination). The com- ! "_ponents $1, S2 , S3 comprise the unit vector to the sun in true of date coordinates.
t

The effect of geomagnetic activity upon atmospheric temperature and density

shows a lag behind the geomagnetic disturbance. Thus, the value of K is ,':
p 7 _,

retrieved from the working file for a time 6.h7 earlier than the current inte- , -_

_; -) gration time point. The correction to exospheric temperature is given by ' ..:
?

K _

_'_ AToo= 28?0 Kp + 0?03 e p (Z _>200 krn)

_- 14-92) "

K

_ AT== 14?0Kp +0702e P (Z<200km)) ,'

_{:_ The corrected exospheric temperature is 'i .,

_ "I_ = TI + AT® (4-93) >,

,_ and the inflection point temperature is ._

i, ?
f_

t _ -0.00216222 T_ (4-94) ',t_' Tx = 371°"6678 + 0.0518806 T_ - 294?3505 e

These two temperatures together with the _pacecraft altitude,are used in the _,Roberts equations to compute the standard density value. Howe_'er, a number ' !

_' of corrections must be applied to the standard density values in order to account "

'_' 4 -35 ,"

/

1976017203-155



J

"; forvariousphys_ca!effects.These correctionsare givenby formulas from_ .
" JacehiaTs paper (Referenc_ 13), and will be presented before proceeding to the
' Roberts equations.

In addition to the correction to the exospheric temperature, there is another '_i

direct geomagnetic effect on the atandard density below 200 km

? K

• (13Iog10 P)G = 0.012 Kp + 1.2 x I0-s '."p (4-95)

; The semi-annual density variation is given by the following relationships (for
,: altitudeZ inkin):
.:

;, (A log,0 p )SA = f (Z) g(t) (4-96)

where

: "x. f(Z) = (5.876 x 10-7 Z 2"331 + 0.06328) e-'°°2s68:: t
, L_'

g(t) = 0.02835 + [0.3817 + 0.17829 sin(2_SA + 4.137)]

x s in(47r'rSA T 4.259) (4-97)

_SA =@+ 0.09544 + _-sin(27r¢ + 6.035 -2-

*\

JDIg58

365.2422

In the last equation JDlgss is the number ef Julian Days from January 1, 1958.

The correction for the seasonal latitudinal variation of the lower thermosphere
is

i

4-36
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(A lOglo P)LT = 0.014(Z- 90)e [-°'°°la(z-9°)_

(4-98)

x sin(2rr_+ 1.72) sinq_ I sinqbl ,

Finally, the correction for the seasonal latitudinal variation of helium is

-: - 0.3535 (4-99)

: _- where e is tile obliquity of the ecliptic.

As mentioned earlier, for altitudes below 125 km Roberts used the same tem-

perature profile that Jacehia used, i.e.,

4

T(Z) = T x + -- CnZ n (4-100)
354 //

n = 0 ,.,-J

il where

_" _ d 1 To

TO= 18370 K ,

2"

ix Co = - 89284375.0

?: C 1 = 3542400.0 km -1 (4-101) '

7'

C2 :: 52687.5 km-2

•_ C3 - 340.5 km-3

_, C4 : - 0,8 I':t;y4

2'

_.i and where Tx is the inflection point temperatt- (at Z_ : 125 km) given by _'
¢ Equation (4-94). Roberts substituted the terr' , ature profile, given by Equation

_ (4-100), in the barometric differential equal" ,.nd integrat."d by partial fractions ..

to ol)tain

i 4-a7

_, _ ,,_ ,,
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I
M(Z) (4-102)

\ T(Z---5e p(kF )

as the expression for density for 90 < Z _< 100 kin, where the subscript "0"

refers to conditions at 90 kin. The mean molecular weight is given as

6

. M(Z) = _ AnZ" (4-103)
n=0

where

A0 = -435093.363387

A 1 = 28275.5646391 krn -1

: A2 = -765.33466108 km -2
/
: A 3 11.043387545 km -3

A4 = -0.08958790995 km -4 /
J

A s = 0.0C038737586 km -s <t

A 6 = -0.005900697444 km -6

These constants give a value of M(90) = M 0 = 28.82678, which is not too different

from the sea-level mean molecular mass Ms of 28.960.

The value of density at the lower limit is assumed to be constant at P0 =
3.46 x 10-9 gm/cm 3. The constant k in Equation (4-102) is

t

3S4gsRa2
k =

Rd1C4

where

gs = 9.80665 m/sec 2 = sea level acceleration due to gravity

R_ = 6356.766 km

R = 8.31432 Joules/°K - mole (universal gas constant)

4-38 RF21¢ODUCILILITYOF TIIE
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J

The functions F1 , F_ in Equation (4-10z) are /

F1 = \76 +'_] \90- rJ \90"-r2] 8i5o- 18ox ; x_+y_
, ¢

(4-I04)

[, ] J ,Ps P6 F Y(Z- 90)

F2 : (Z- 90) + (Z+R) (90+R) + ¥ tan-' [.y_+ (Z- X)'ig0- X
/

In these functions r, and r 2 are the two real roots and X and Y are the real and i
imaginary parts (Y > 0), respectively, of the complex conjugate roots of the quadratic

4

P(Z) =Z C.'Z" (4-105) !I
n'O i

J

with coefficients ._/

354TX Co

J

i C. ,

) C::-- l<n<_4
C4

'_. for values of C,, given by Equations 14-101). The parameters p_ in the functions ' 'F are

i:",. S(r, ) :

P2 - U(rl) :

Ii -S(r_) ,
-- ¢

P3 U(r2 )

.... 4-39
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I

?

p
]

¢

P5 = V

_ P4 = {B0 - rlr2 R2a[B4 + Bs(2X + rl + r2 - Ra)] + W(rl) P2 ,

_ rlr2 BsRa(X2 + y2)+ W(r2 ) P3

+ rlr2 (R 2 _ X2 _ y2) P5 }/X*

_ P6 = 134+ Bs(2X+ rl + r2 - R ) - Ps - 2(X + R.) P4

, - (r 2 +R )pa- (r: +R )p2 !

' Pl = B5 - 2P4 - P= - P2 -_
:i s# a

Intheseparameters -:

X* = - 2r I r2 Ra (R2a + 2XR a + X2 + y2)
,:

V = (R. + rl) (R + r2) (R2 + 2XR 4 X 2 + y2)
(4-106)

U(r ) = (r + Ra)2 (r2 2Xri + X2 y2 ) ,_i - + ) (rl - '2- i :.

, ¢"

W(ri) = rlr2R (R * + r) a + - •
1"1 _

t

The functionW (r) iscorrectedfrom an erroneousexpressiongivenin Refer-

ence 14. Finally, the coefficients B n and the function S(Z) are given by .

TX

B =a +_n T -T O
(n = o, 1 ..... 5)s

Z "S(Z) = BnZn
1

n=O

' 4-40
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X
• _.._ .,,..v Wtl_;.'t:

a 0 = 3144902516.672729 /_0 = -52864482.17910969

_ a I = -123774885.4832917 Pl = -16632.50847336828 _-'

a 2 = 1816141.096520398 92 = -1.308252378125
a3 = -11403,31079489267 t_3 = 0.0

a4 = 24.36498612105595 _4 = 0.0

_ a s = 0.0089575028".39707995 _s = 0.0

_ As noted above, Equation (4-102) is valid below Z 100 km. whcre mixing is i

I assuraed to be predominant. However, diffusive equilibrium is assumed above :

, Z = 100 kin; h_nce, the profile given by Equation (4-100) was substituted into
,*,he diffusion differential equations (one for each constituent of the atmosphere)

• and integrated by partial fractions by Roberts to yield for 100 < Z < 125 km

2
5

_= (Z) , (Z) (4-107)

• _, 1--1
-_-

,' Rigorously, the density at 100 km, /_(100), should be evaluated by means of

:_ " ") Equation (4-102) for the particular exospheric temperature T_ of interest.
" However, since the evaluation of that equation is ,_,omputationally expensive, it

:: is preferable to avoid adding that expense to that already necessary to compute

, Equation (4-107). This is avoided in GTDS by precomputing values of _ (1001.

: using Equation (4-102), for a series of values of T_. These values have been
least-squares curve fitted by the polynomial

:' 6 _i

;' /,(100)M, " _F _nTn (I-108) ,'
where n --o _,

; 7

: ';n 0.1985549 x 10 -1°=

_ _1 = -0.183349 x 10 -14_D

i' _2 = 0.1711735 x 10 "17 !

_'a = -0.1021474 x 10-_o
,_}:
L
(: : = 0.372"894 x 10 -_ !

'4 j

_; _-s = -0.773t110x)0 -_s _

_£ = 0.7026942 x 10 -a2 '
" i:i _6 {

; ,i_!_, and M_ = the _ea level mean molecular mass = 28,9u gm/mole.

4-41
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?

, This approximation is used in Equation (4--t07).

.: The constituent mass densities for altitudes between 100 and 125 _:m are given by ,:

I

! '/., _,,,_,_,M. FT(lOO)t+ai _i k exo(M_kF4) (4--i09)_,,_,_ _,vv,_ L_ .j :_ - -

The identification of the eonsti_dents and the values of the corresponding constants
i in Equat:on (4-109) are given in Table 4-2.

; Table 4-2

Atmospheric Constituents and Related ConstanCs

i - ' ' Molecular Thermat #i, consti_ number

: _ Index i .density .) (MJp(lO0))
: i ' Constituent mass M, diffusion divided by Avogadro's

(grams/mole) coefficient ai -_
,: number

'_ 1 [ N2 28.0134 0 0.781 tO "_"
2 Ar 39.948 0 0.93432 X !0 -2
3 He 4.0026 -0.38 0.61471 X 10-5 }

4 02 31.9988 0 0.16177
5 0 15.9994 0 0.95544X 10-1

1.00797 0
6 I "

Hydrogen is an insignificant constit,aent at altitudes below 125 km; hence, it is
not included in Equations (4-107) and (4-109). The temperature at 100 km is

given by Equation (4-100) i the form !
x.%.

T ,100) = Tx + x-_dI (4-110)

where :, "

4 i r

_' Q = 35-4 C (100) _ = - 0.94585589 { ,

nmO I ' '
i

is the precomputed value of the polynomial fcr i00 km. The parameter k in

Equation (4-109) is the same as deflnedpreviously, and the functions F3 and F 4 ]
a_egivenas ]

4-42
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The parameters q, are dell, ..... z

-I

1

_ q4 = {I -'- rlr2(R2 a - X 2 - y2) q5 + W('rl) q2 + W(r2) q3 } /X*

i q6 : - q5 - 2 (X + R ) q4 - (r, + Ra) q3 - (rl + R ) q2ql = - 2q4 - q3 -q2
$

_i and X, Y, r 1 , r2 , X*, V, U(¢), and W(v) are the same as detined previously.
g_

i' Finally, diffusive equilibrium is still assumed for the re_:ion above 125 kh:, but

the temperature profile giver, by Eqt, ation (4-190) is no !c)nger valid. Jacchi_deEned the temperature for '.he upper region by the empirical asymptJt;c funch'm

1) ,

t
m i z
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-" i [ | l ml ]. J" | F | _ - [_ e-"

= i
I ¢

2 r >T(Z) = Tx +-- (T¢-T) tan -1 0.95_:-: "_

(4-112)

-- L1 + 4.5× 10-6(Z- 125) 2"s t

In order to be able to integrate the diffusion differe'.tial equations in closed form,

Roberts replaced Jacchia's Equation (4-112) with i .m function

Tx - Z- !2 (4-113)
T(Z) = T_ - (T_ - T) exp 3g 5 ,"

This temperature profile is continuous at Z = 125 km regardless of the choicex

) of the parameter {. The slope is continuous at Z if* X

_ = 1.9 (R + Z,_) = 12315.3554 km

The value of _ is n,_t set equal to this constant in GTDS, but is computed by a ./.

procedure to be described later.

Integrationof the diffusiondifferentialequations for the temperature profile

given by Fquation (4-113)yields,for the firstfiveconstituents(i= i, 2..... 5)
in Table 4-2

/T_'l+a'+_' (_._-T) _'' (4-i14), (Z)= _,(125) _f) : T

wh ere

M, g0R_ "_) 35 (i-115)z,- _: (T_ ___ (6481:766)

The constituent mass densities at 125 km can be obtained rigorously from Equation

(4-109). However, as in the case of the density at 100 kin, GTDS makes a curve-

fitting approximation to give (for i = .1, 2 ..... 5):

6

l°gl°di(125) = S :'J T"J (4-116)
j=O

4-44
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I

:' as a function of exospheric temperature, where di is the constituent number J

:-_ density divided by Avogadro's number (Pi = Midi )" Th_ polynomial ccefficients

" 5ij in Equation {4-116) have been determined for best fits to the values corre-
_ sponding to Equation (4-109), and are given in Table 4-3.

_i _he value of the belium density computed by Equation (4-114) must be corrected
:) for the seasonal latitudinal variation as given by Equation (4-99). The specific

form is

_ (._ 1og 10P)l.le

:_ [/33(Z)Jcorrecte d = ;3(Z) 10

Above 506 km the concentration of hydrogen (i = 6 in Table 4-2) becomes suf-

) ficiently large that it also must be taken into account
L

.o( oo
[_ T(Z) J - T(500).j (4-117)

I

where the hydrogen density at 500 km is

M6 ['I_'I3-(39"4-5"5l°gl0T500)l°gl0Ts00] (4 -118)

-_*, Ao (500) = A

For exospheric temperatures lower than approximately 600°K, the relative con-
centration of hydrogen is significant at altitudes lower than 500 km; however,

the resulting density error is partially compensated for by the least squares
fitting of Roberts' parameter .C (Equation 4-122).

In Equation (4-117), _6 is computed by means of Equation (4-115). The quantity
A in Equation {4-118) is Avogg:rc's number (A = 6.02257 × 10a3). The temper-

ature at 500 km is computed in Equation (4-113). Finally, the constituent_ are
summed to yield

6 ._

;_ (z) : _ ,_(z)
(4-119)

1:1

as the standard density for the region Z > 125 km.

The standard density, as computed by Equations (4-102), (4-107), or (4-119) must

be corrected for geomagnetic activity (by Equation (4-95)), the semi-annual vari-
ation (by Equation (4-96)), and the seasonal latitudinal variation of the lower

thermosphere (by Equation (4-98)). These effects are summed logarithmically
to obtain

4-45
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t_

(4-120)
(_ l°gl0 _)_o,, = (A 1o_, e P)G + (_ l°glo /:)SA + ('_ l°glo 'D)LT

t Thus, the final corrected density is ."

[ (,'_ logloP)corr

i /_(Z) : ;s (Z) 10 (4-121)

_' The standard densities, as computed by Equations (4-102) and (4-107) for thee

region 90 < Z < 125 kin, agree e :actly with values published by Jacchia in
_; Reference 13. Above 125 km however, the values given by Equat,on (4-119) do

(' not agree exactly with the Jacchia data, due to Roberts' introductionof a differ-

_ ent form I_N,._ti(,- a _• _ ....... -...,j for the temperature profile at the higher altitudes.

Values of the parameter _ in Roberts' temperature profile were determined for
,_. a series of exospheric temperatures, such that the resulting density profiles

'_ versus altitude (from 125 km to 2500 kin) gave the best least squares fit to the
| Jaechia tabulated data. Three sample fits are shown in Figure 4-3 for low,

I_ medium, and high values of the exospheric temperature. Note that the maximum

l deviation from the Jacchia values is less than 6.7%. The best-fit values of , ."

are shown in Figure 4-4 as a function of exospheric temperature T®. The curve "

in the figure is the polynomial

:}
4

7",;, _: = _ T_ (4-122)J

" I-'0

with coeffieients

{0 = 0.10,'.q445 × l0 s

_ = 0.2341230 × 101'1

_ {'2 = 0.1579202 × 10 -2

_'3 = -0.1252487 × 10 -s

_J
_4 :: 0.2462708 × 10 -9

computed to best fit the optimum _, values. Equation (4-122) is programmed in

GTDS to provide the means for selecting _, in Equation (4-113). In general, the

values of _ are such thac the slope of the temperature profile is discontinuous

at Z_ = 125 km, but this is not thought to be of any serious eonsP, quence.

'"_ 4 -47
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4.5.5 Associated Partial Derivatives

The equations for compu_ng the partial deri ative bp/_ R, which appears in
Equation (4-_±j, are presented in this section for the Jacchia-Roberts model.

Equation (4-.12i) for the density is written in the form
I

p(Z) _.-p, (z) A,%
o

and the desired partial derivative becomes

3F' )(APt) 3Ps (4-123) :

.,' The variation of the correction factor is derived frcm Equations (4-120) and
/ (4-95) through (4-98)

_i _ (LPc) /5Pc ( b Z /t

h l _ J"b_ .4342944819 g(t) f'(Z)

I

+ .014 sin(2_¢+ 1.72) e-'°°la(z-9°)2

F
__Z_ZI(1 - .0026{Z- 90) 2) sinq Isin4i (4-124)X

L

where

f' (Z) : - .007£68 f(Z)

�2.331(5.876-.10-7) ZI.331 ,,-.002_6_z

M
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The cariation of altitude with position, 5 Z./b R, is computed as shown in Equation ]

• _ (4-150) in Section 4.5.7. Differentiation of Equation (4-90) yields

, ]
• XI

2_' x, +xl ,

be, s in 2,; X2 (4,-125)

i -_R 2 x_+x_
f

i.= 1

i -'_ X3

The variation of the standard density is computed directly from the barometric
differential equation (Refere_ce 13) for altitudes below 100 km

{Eiz j ,t "_% 6 - _ ,:

: dR _ nA. Z "-1 RTMg _RSZ T_ bet (4-126) .,1
* " n=l ;

and from the diffusion differentialequation (Reference 13) for altitudes above i00 km "2

{rI_ _ _+ 5T (4-127)

_ L LR(Z + R) ,_R _3_'3_

where _ +t

'Z/- _ ?JI M| <

I -": I I
_4

The partial derivatives of the temperature are computed by differentiating

Equation (4-100} for altitudes below 125 km

.,_ ,1_ \-_) _,_+\3s _ , .c _ ,,
n-- I

or Equation (,t-113) for altitudes above 125 km :_

_,. L!
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' (Tx - T°) +_)2J

Finally, the derivatives of Tx and To are computed by differentiating Equations
(4-94) and (4-89), respectively

?
" _L -. 0021622Tco

,, - 0.0518806 + (294.3505) (.0021622) e
_. bT
• _ i/

{2 ( I--= 0.3T .2 sin i'2 O cos 0 1 - c,,_ 3.°-'r ___00

(4-130)

_.0 7- b,_
- 2.2cos 1"277,sin _ co_

3 (cos2. 2 n2 2 ) 2 T 7 _'r
, --_ _,- si • 0 cos -_ sin 2 fi_

In the latter expression (from Equations (4-90) and (4-91))

R_RO9IJCIBILrP/OFTlill
' 4-52 ORIGINM-'pAGII]_POOlll _.
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{ "rr V'n'(H + 43.0)I} 3H (i = 1,2) (4-131)
3_" - 77 1 + _ cos _
3Xi 180 30 L 180. 3x i

f

3H 180 (S_X2-S2X t '_j" 1 l

(S_X1 - S2X2) Xi XlX2. 1 - X
× -2 R_ X1 + X2

_' ,,I f

._ - 0 f
; 3X3
z*

!,

It might be argued that the term in Equation (4-129) involving the derivative

: __/_T should not be included, since Roberts considered C as a constant in ,,
his integration. However, T= and T -- F(T_ ) were also held constant for thc

% integration over altitude. Therefore, if variations in T_ are taken into account,
and ! is a function of T_, then the derivative of 4; should also be included, and
is computed by differentiating Equation (4-122), the best-fitting polynomial to

the optimum values of f. .;_

4.5.6 Modified Harris-Priester Atmospheric Model , 4

'tarris and Priester determined the physical properties of the upper atmosphere

theoretically by solwng the hea, e_nduction equation under quasi-hydrostatic
conditions (References 10-12). Approximations for fluxes from the extreme
ultraviolet and corpuscular heat sources were included, but the model averaged

?,
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the semia,_xlual and seasonal-latitudinal variations _nd d'd not attempt to account ]
for the extreme ultraviolet 27-day effect. The atmospheric model presently
included in GTDS is a modification of tile Harris-Priester concept. The modifi-
catiou attempts to account for the diurnal bulge by including a cosine variation

-, between a maximum density profile at the apex of the diurnal bulge (which is
located approximately 30 ° east of the subsolar point) and a minimum density
profile at the antapex of the diurnal bulge. Discrete values of the maximum and

_ minimum density-altitude profiles, shown in Table 4-4, correspond to mean solar

activity and are stored in tabular form as PM(hi) and ,om(hi), respectively.
t _

t Different maximum and minimum profiles can be retrieved from disk storage for
different levels of solar activity. Exponential interpolation is used between

"_ entries, i.e., the minimum and maximum densities, Pmand PM, are given by
/

p_h) = p_,(h i ) exp (a)

h. "_-h < (4-132)- hi �1

PM(h) = PM(hi) exp . ./ :
\ -'M /

and the respective scale heights, Hm and H M, by

h -h. �' ' (a)

fn [Fm(hi+l)//_ (h)]

(4-133)

h - hi+ I (b) '

'"',,_ HM = _n _M(hi+,) <FM(h,)]

A good approximation (neglecting polar motion) for the height, h, is _. scr hv

h=r-r
$

where r, _s the radius of the earth given by Equationa (3-107) ,nd (.;-1 5) aS

: Re(1- f) (_ .135)
r s -- ¢

_'1 - (2f - f2) cos 2 _ ' .

4 -54
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I and _,

r "_, the magnitude of the satellite position vector

Re _ the equatorial radius of the earth _ _

f _ the eprth's flatter_ing coefficient ,

5 _ the declination of the satellite. It is assumed that _ equals _
the geocentric latitude of t_ subsatellite pchlt, i

Table 4-4 _'! 'i

Density Altitude Tables i

1 Density Height ! :_y Max. ..... _ '_

I" (km) (gm/km 3) I (gm/km 3) (kin) (gm/km 3) (gm/km 3) _ _:

$ ':

100 49'1400. 497400. 420 1.558 5._84 ._
120 24900. 24900. 440 1.091 4.355

130 8377. 8710. 460 .7701 3.362 4
140 3899. 4059. 480 .5474 2.612 ..--'"

,{
150 2122. 2215. 500 .3916 2.042

:_ 160 1263. 1344. 520 .2819 1.605 ,!
_; 170 800.8 875.8 540 .2042 1.267•

lt'0 528,3 601.0 560 .1488 1.005
190 361.7 429.7 580 .1092 .7997

_ 200 25_,7 316.2 _00 .08070 .6390 _

• _ 210 183.9 239.6 620 .06012 .5123 _
220 134.1 185.3 640 .04519 .4i21

_ 230 99.49 145.5 660 .03430 .3325 {"

_ 240 74.88 115.7 680 .02632 .2891 _
_ 250 57.09 93.08 i 700 .02043 .2185 '
_ 260 i4.03 75.55 720 .01607 .1779

,_ 270 34.30 61.82 740 .01281 .1452 ,
• 280 26.97 50.95 760 .01036 .1190

_} 290 21.39 42.26 780 .008496 .0_776 _
_" 300 17.08 35.26 800 .007069 .08059

_, 320 10.99 25.11 840 .004680 .05741 _ _:

: _: 340 7.214 18.19 880 .003200 .04210
t 360 4.824 13.37 920 .002210 .03130 '

_ 380 3.274 9.955 [ 960 .001560 .02360 ,:

_ 400 2,.249 7.492 ] 1000 .001150 .0] 810

_,,,, a-55 '
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I

If the density is assumed to be maximum at the. apex of the bulge, then the

cosine variation between ruaximum and minimum density profiles is

,_. Po(h) = pro(h) + [pM(h) - p_(h)] cos" - , .

; where ¢ "s the angle between the satellite position vector and the apex of the
diurnal bulge, The angle _ is given by

cos _b= sin b sin _ + cos _ cos _ cos (a- a -_) (4-137)
:, s s s .

where
i

b "_ the declination of the sun ';
$

) J a "_ the right a,_cension of the satellite

, a _ the right ascension of the sun

'i _ _ "_ _he I.ag angle between the sun line and the apex of the diurnal bulge , .
__ (approximately 30 °) ._/ ....

" It can be cal, mlated in vector notation as } '

q_: c°s-I (4-138) _

or the cosine fuimtion in Equation (4-136) can be detemnined directly as

cosn _ = -_ COS '_ n/2 "_. n /2 , '.'_ = _ (4-139) i
2 2 5 °

where

_.. ¥ "_the satellite position vectol expressed in inertial geocentric .)
coordinates

Us "_the unit vector directea toward the apex of the diurnal bulge ex-
pressed in inertial geocentric coordinates.

,.2
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"4_ "_ '_ _ 2c__ _ _.._. _ *,_,_ •_.__. , _ _ ...... _., ,,, .... _ _ ±_,_*,

i
?

The vect( r haz t:,e fJllowing components ,:

UB =cos _; cos (% +_)
X ":

I = cos _ sin (a + °

y '-

1) : s in _
B z s i

l In the modeling of accelerations in GTDS, the drag coefficient Co and atmospheric ;

:ensity p (h) always occur together as a product. The following error model
is introduced in order to account for systematic errors in either CD or/_ '

1 "
CD'p: CD (1 _pl) [1 +/)2 (t - to)] 1 + _3 c°s_ p001) (4-140) :_

a:here ,"

CD -, a priori syce_fied drag coefficient " _,

_- p_ ,_ scale factor error coefficieat on CD/3

• ! P2 _ error coefficient of time variation of C Dp _,

: _. P3 error coefficient accounting fox deviatior., in the diurnalvariation of ;) (h)
" }; i,

" _ t -. the time of the instantaneous satellite position -' ,:

",_. t -_ the epoch time ._.
• _ 0

' i _ The altitude density fur _ion, ,-0(h), is determined from Equation _4-1_23). The -,quahdties _ t' '_2 ' _a ' and n are adjustable parameters for the error model.

4.5.7 Associated Partial Deri:atives

Equation (4-14c) for the product of the r'-.ag coefficient and thc densit-," can ue

i partitioned as follows !
0( 11 (4 - 1,t'• CD=C o I +,,_)_.I , ,2(t -t o
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Making use of Equations (4-132) and (4-133), the partial derivative cf density

with respect to position is ther, given by

Dp {'_p DPm DF DPM_ Dh ?p D'_,' (4-143)
DF \_Pm Dh +_zM Dh] D_ D_ DR

where

_p- (l _ cosn 2) (1 +p3 cosn2) (4-14a)D_:m

°

_. - cos" cos" (4-145) t

i
DPm Pm (4-146)

DPM P.u.
- (4-147)

?h I-_ :-.:
},

.k

The partia 1 derivative of density with respect to ,_ and the partial derivative

of _ wid, respect to H are obtPined from Equations (4-138} and (4-142) ' "(

D,) n , _9 i n _.._.},fCo, l1 p3 __)
- COS n- --S -- _m ) , CON n _

_W 2 2 2

(4-14 _ s

) ' 3 _ (PM-*_,n _' COS"

"L

4-5
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%

- LL_-P R--_-_ (4-149):_ s i n ,
.,_ x

The partial derivative of the height _dth respect to R is obtained by differentiating

• Equation (4-134), yielding
t$

. - {_1-f' (2f-f2)i_a72t _
; _ _h R Re , cos _" ::(cos c) (4-150)

where

[xzit c(cos z) _ 1 yz 2 (4-151)

J
/

Substitution of Equations (4-144) through (4:151) into Equagion (4-143) determines
the partial derivative of _. with respect to I'_, as required in Equation (4-81).

1
The err or coefficients _1, _2, and _a contribute the following partial derivatives
to the C matrix appearing in the variational equations

:-" '_.t ""

"_'RD_ R____DD _ P'V Ca)

b,_1 -C D Cmo[l + /'2(t - t0)_ (1 + , 1) t

(4-152)

• . ..

3RD _ RD , Rn(t - to) (b)

_A,2 Cm C-'Oo(1+ "'l) (t - to)= [1 + ,, 2(t - to)J

•_. -_, RD COSn 't

- + O'M- t'_) cos" cos" __2'= " (e)
'%'a 'c(h) = ' 2 /1-_ :acos"'_"_\ 21

_ 4-59
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4.5.8 Comparison of Atmospheric Models l

Only a limited number of comparisons have been made at this time between the

results obtained using the Harris-Priester and the Jacchia models. One such

comparison evaluated the standard deviation of the weighted residuals in differ-

entia] correction runs made using data from the San Marco-3 satellite, with a

perigee altitude of 213 km and an inclination of 3 degrees. A one day differential

correction was performed around the epoch of the elernent set selected in order t_

to determine the elements at DC epoch. When the density parameter _1 (see
Equation (4-80))was not adjusted, both models converged to the same standard

deviation, but different elements. When PI was adjusted, the Jacchia model gave
a somewh2t lower standard deviation than the Harris-Priester model. If the

atmospheric bulge angle used in the Jacchia model was included in the Harris-
q

Pries_e _ model, the standard deviation decreased slightly, but was still larger
than that for the Jacchia model.

:, A second compa_'ison was made by generating an ephemeris forward 3 days from

the elements obtained in the original differential correction and comparing the

sateUite'spositionand velocitywith a statevector obtained in a differential ,,

correction about the new epoch. The position difference_ resulting from this / ";

procedure were approximately twi_e as large for the Jacchia model compared "

with the Harris-Priester model (55 kilometers versus 30 kilometers). Thus, I
thes _ comparisons were inconclusive since some indicated better results with

the Jacchia model, while others indicated better results with the Harris-Priester
model.

Clearly, more exhaustive testing is desirable, particularly in light of the fact

that the Jacchia-Roberts model is significantly more expensive computationally

than the Ha_ ris-Priester model. The Atmosphere Explorer satellite series

should provide a good opportunity for such .esting.

t
.!

4.6 SOLAR RADIATION PRESSURE

4.6.1 Solar Radiation Pressure Perturbation Model "

The force due to solar radiationpressure on a vehicle'ssurface is proportional

to the effectivearea A of the surface normal to the incidentradiation,'.hesurface

reflectivityrj,and the luminosity L of the sun, and is inversely proportional to

the square of the distance Rv _ from the sun and the speed of lightc. !

(.

4- 60
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I

t .Ji 1 _ i- J n ii •

•.- _

'i The magnitude of the force due to direct solar radiation pressure on an area A ]

is therefore given by*

L CRA
r - _ (4-153)

4vR 2 c
VS

where

C R = 1 + _(e.g.,C_ = 1.95 for aluhlinum) (4-154)

Tile magnitude of the acceleration acting on a spacecraft of mass m and area A,

due to direct solar radiation pressure at one astronomical unit from the sun, is

F S %A (4-155)
m c m

#

where S denotes the mean solar fluxat one astronomical unit. The quantitiesCR,

A and m are grouped together since they are spacecraft properties and can be

• " determined prior to flight. The magnitude uf the acceleration on a spacecraft

" due to diroct solar radl.:tion at the actual distance R,_ from the sun is given by

F S R2 CRA
_ _.... (4-156)

m c R2 m
vs

where It designates one astronomical unit, i.e., the semimajor axis of the
earthVs orbit.

%

All of the above factors except R -Lreconstant for a given spacecraft and
mission. For computational convenience, P replaces S/c. p, is defined as
the force on a perfectly absorbing surface (_ :- 0) due to solm" r_diation pressure
at one astronomical unit.

The acceleration due to dicect solar radiation is away from the sun, that is, in
the direc'.ion of

R R - R (4-157) :

*The determination of the effective area _ of the surface normal to the incident radiation is directly .,
analogous to, the determinmion of the effecti..',_ area normal to the relative velocity vector for
modeling aerodynamic forces, which i_ discus._ed in de,_all in Section 4.,5.2.

4 --61
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i

I
I

where

_ the position vector of the vehicle in the inertial mean of 1950.0 coordi-

nate system

I

Rs "_the position vector of the sun in the inertial mean of 1950.0 coordinate
_ystem.

The model for the acceleration RsR due to diroct solar radiation is

"-" CRA Rvs (4-158)RsR = vpsR2sun
m R3

v s

where v is an eclipsefactorsuch that

: v = 0 if the satellite is in shadow (umbra)
= 1 if the satellite is in sunlight

, 0 < > < 1 if the satellite is in penumbr ,,

A simple cylindricalshadow model isused todetermine theechpse factor.
More sophisticatedmodels accountingfor penumbral regionsand reflected I
radiationeffectsmay be consideredin laterversionsoftheprogram, as re-

quired. From Figure4-5 itis apparentthatthesatelliteisin sunlight(;,= I)if

D =R' "Us > 0 (4-159)

where

R*_. the satellite position vector relative to the shadowing body

U, _ the solar position unit vector relative to the shadowing LcdV.

IfD< O and thevector

Sc - _° - DU (4-160)

has a magnitude less than the body radit, s a,., then the spacecraft is in shadow
(i.e., _ = 0); otherwise, it is assumed that the satellite is in sunlight and : = 1.

REPRODUCIBILITY OP ]_rIF
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: Figure 4-5. Cylindrical ShadowModel

J
s

4.6.2 Associated Partial Derivatives ...

The partial derivative of RSR with respect to position is

_SR PsR_unCRA _ 3 [R - Rs] iR - RsiT 1

_._ ...... (4-161)

_ ml_ _I _ }_ _I;

-SR 03 (4-162) ":,(

and for the solar pressure model parameter _ ;

PsA (4-163) ,;
k = --- .:

m

RsR = ;_R2 C, [R - Rs! (4-164) :

{ 4 -"2 ,,_-
£ )
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4.7 ATTITUDE CONTROL EFFECTS

The function of the attitude control system is related to two modes of operation.

During the first mode, commonly known as the acquisition and cruise mode, the

attitude control system is used to establish and maintain three-axis stable orien-

tation of the satellite. Such an orientation is obtained during an interplanetary

flight, for example, by fixing two directions in space. One direction is always

such that the sensitive surface of the solar panels faces the sun and the other

direction is determined by pointing an on-board sensor toward a predetermined

star. Usually another requirement that must be satisfied during the latter portion

•_ of the flight is that the high-gain antenna used for communicatior._ should point
toward the earth.

In the second mode of operation, applicable during midcourse maneuvers, the

attitude control system orients the satellite so that the thrust vector of the vehicle-

fixed rocket motor is aligned along a predetermined direction in space. This

i; orientation is maintained by controlling the thrust vector to pass through the
center of mass of the s_tellite. After the maneuver, the attitude control system
re-establishes the cruise orientation.

t t

The low-thrust forces, generated by the nt.rmal functions of the attitude control

system, can produce accelerations of 1 × 10 -7 cm/sec2 to 3 × 10-7 cm/sec 2. "*

This can result m a target miss of 100 to 300 km at Mars, for example. The

translational forces producing the acceleration are ,'he result of thrusters not

acting in couples, thruster misalignment and unbalance, or the result of gas

leaks through the valves during times th :he thrusters ace not firing.

4.7.1 Attitude Control Perturbation Model

The model used to account for such accelerations has been constructed from

,. the application of curve-fitting techniques to telemetered data and is defined
as follows: _:

t

a x + bx(t -T 1) _ Cx(t- T,,cl
,. [

)2 [t](t - T ) - u(t T 2)1. (4-165) "

-rTAC ay _ byl, t Tel) + Cy(t "lac 1 .el - ac

"-a _ b (t Tn_l) �c,(tT ,1)2 "_J,

4-64

]9760]7203-]84



t ii .ml"1 I 1 1 J" | ' I ' ' "1

_.. The coefficients (ax, ay, a z . . . cx , ey , c z ) are low-thrust polynomial coefficients
to be determineo. The terms T¢I and Tac 2 are input epochs at which the attitude

= control acceler_tio_ polynomials are turned on and off, rcspective!y. The function

u is defined by

; fl, t > To:

, u(t - Tacl) = _ (4-166)• 0, t < Tac 1

_" ll. t > Tac 2 (4-167)
i u(t - Tat2) :

L0, t < Tac 2

The subscript x denotes the acceleration component along the spacecraft's x v :
(roll) axis; the sub,_;cript y denotes the acceleration component along the space- /

craft's Yv (pitch) axis; and the subscript z denotes the acceleration component " "

I,, along the spacecraft's z, (:law) axis.

Two transformations are necessary in order to represent this acceleration in

the mean of 1950.0 coordinate system: (1) a transformation from the vehicle-

fixed coordinatc system (x, y_, z ) to the true of date coordinate system and
(2) a transfnrmation from. the true of date coordinate system to the mean of

1950.0 coordinate system.

The transformation from the vehicle-fixed coordinate system tG the true of date

coordinate system is de:_rmed in Section 3.3.12, and is given by 1

= Q_ (4-168) ,

where the transformation matrix Q is defined in Section 3.3.12. The matrix C T ,

which transforms from the true of date aystem to the mean of "95c.0 system is

described in Section 3.3.1. Thus, the total transformation is given by

'-' ::- (4-169)
RTAC --:CTQrTAC ',

4-65
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: 4.7.2 Associated Partial Derivatives

; Since C, Q, and rTAc are functions of time only, and not of the satellite position

or velocity, then

j .. ..

:" 3RTAc 3RTAc '
-_--Z---=03. (4-170)

DE _R

The contributionstothe variationalequations (Equation (4-7))of the control system

: acceleration parameters a x, ay, a Z , . . . , c z are

DR

TAC_ cT Q [u (t - Tel) - t, (t - T¢2)] (4-171)
3K

.J

/ ._. ._.
DR TAC _R TAC

_: (t - TRcl) -_ (4-172)

•_. ,, 1

3RTAc (t T i) 2 bR'Ac (4-173)

where a, b, and c denote the vectorq

" 5 - g: ,)[ _-: cy (4-174)

[..a b z [ C z

4.8 THRUST EFFECTS

There are map y forces acting on a spacecraft during the transfer phase and

during the orbiting phase of its trajectory. Even though such forces have been
modeled, the state o_ the vehicle is still uncert_in, primarily because of the im-

precision associated with the injection conditions and the physical parameters

W

4 -(;6
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?

-- v appearing in the mathematical models. Very small errors in the thrust mag- ]
nitude and/or thrust direction at injection magnify into very large errors in

._ position and velocity near the target body. In order to avoid such errors and

attain pre-assigned terminal conditions, spacecraft are designed with the
capability co perform multiple propulsive maneuvers during the interplanetary , _

.___i phase of a mission. Furthermore, ifthe spacecraft is to orbit a distant planet, _ i

• _ maneuvering capability must be available to inject into orbit.

: 4.8.1 Thrust Accei_ration Model

: I- The model describing the acceleration during such cor_ctb'e maneuvers is
_ based on the reduction of data taken during the motor burn testing procedures

?_ _; and is represented in an inertial trite of date system by

_,, o,

}t r T = a{u(t - To) - u(t - Tf)} UT (4-175)

d

• _ where .,i'""

a -.magnitude of the thrust acceleration
_" ",L Jr

UT _ unit vector in the direction of the thrust acceleration

TO _ effective initiation time of the motor burn (ET)

Tf _ effective termination time of _he motor burn (ET)

and u is defined as in Equations (4-166) and (4-167).

_,e _,oi,'.,r's effective burn time is

Tb = Tf - To. (4-176)

!

The propulsive acceleration is modeled as follows

a =- a 0 -F a I "y 4 a 2 7 2 4 a 3 .r 3 + a4 74 (4-177)

,Pl _'

4-67
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where ] _

._ T=t-T 0

J Equation (4-177) characterizes the thrust acceleration as a fourth degree poly- ,

nomial in _-, the time from effective thrust initiation. The polynomial coefficients _

a 0 , a,, a 2' a a' and a 4 are dynamic model parameters which can optionally be
= specified or estimated and represent the effective thrust-mass ratio as a function '

of time.

"_ The unit vector UT is directed :,long ,he spacecraft's thrust axis (assumed L)

be coincident with the x -axis). Tbe true of date components of the vector UT
- are

[,

cos a T cos b T

14-17q)
UT : sin ,:l T COS b T I ':

5 sin 5 -:
"-" T

where 0;

• a T _ the right ascension of the spacecraft's thrust axis relative to the
true equator and equinox of date

c_T "_ the declination of the spacecraft's thrust axis relative to the true
equator and equinox of da_e.

'.. The thrust axis orientation is represented by the fourth-degree polynomials in r '

f

CJW - '_0 _ '117 f z272 _ (J373 _ '14"r4 (4-179a)

212' T O0 * :'1'- _ ;_ '_ :;_3T3 '_ 'b4r4 (4-179b) s

',vhere %, oh: . . . , _ , ,- are dy-.mmic parameters which can optionally :"
b_estimmted. 4 %'" "'' 4
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qt_ _ t
_, The unit vector UT can also be expressed in the orbital frame system, which is

_ i: obtained from the orbit plane system (Section 3.2.5) by a translation of the origin
,_ to the center of mass of the spacecraft and a redesignation of axes such that

--: r-of = E1?op (4-180) :"

where

: Ii E1 = 0
_" 0

? _,,:

: !i The thrust direction is defined by a rotation of Y_ (the yaw angle) about the Zof
_ axis, followed by_a rotation of PT (the, pitch angle) about the new x axis. The

_" compoxmnts of U T in the orbital frame system are of the same form as Eq-ation

(4-178), with 6T replaced by YT and "T replaced by PT" The true of d_te c_mpo-

nents of UT are then given by

= T_ _,:
• ,, U. = (EIE)T_To f EofUTof 14-181) / .

: . "_ where E is the transformation matrix from the inertial true of date system to the

: orbit ptane _yst_m (see Section 3.3.5}.

: Fne thrust acceleration it _xpressed in the true equator and equinox of date

coordinate system via the unit vec or UT • The transformation to the mean
eqaetor and equinox of 195'0.0 system is accomplished as followb

Rw - Crl (4-182) _
]

where the transfarmacmn matri× C" _ des=- ibed in Section 3.3.1.
q

4.8?- Associated Oartia: De:ivatives

When the acceleration R r_is modeled in the direction U r given by Equaho _4-178)
it is independeat of both R and R; therefore

.. ,,

: :'_RT _Rw (4-183)- 0

4-(if)
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L

when the direction of the acceleration UT is expressed as in EquationHowever,

: (4-181), the following partial de, ivatives are used. ',

Using Equations (4-175), (4-181) and (4-182), the thrust acceleration drring a ,:

thrusting interval cap. be expressed as , ,

; RT = a (E1EC)T UT (4-184)
. oI

_. Since only the matrix E __sa function of position and velocity, ;

?,

:: ,-)R w _
": _ (4-185)

= aCT bET E1TUTo?R 8R f

.J

/ and

_,- _ = a CT ?ET - 14-18_) / "-"7- ElT • .-"
bR _ UTof

i !|

The rows of the matrix E are defined in Section 3.3.5 _o be the ,,.nit vectors _, l

V, and V¢. The necessary partial derivatives then may be expressed, using '_
subscript notation, as

)U i
--r" - 0 (4-187) :_x.

j

})Ui Sij x i • x.
" _ = J (4-188) :

3x. r r 3J

_Wi I _Li Li ,3L
-- (4-189)

_xj L ,_x. L2 _x.J J

?_, L _x. L2 c_ (4-190)l l 1

!
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,_p I. /__., Li _,_p (4-194)
i=I

/

r
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C'
_. _,e C matrix components resulting trgm the accelera,'2on model parameters " !!

ao, . . . , a 4 al-e

: 3K T R T -

" c)5 a rl (4-195) i. _

,: ?R T , i :

7 D: - a {u(t - To) -u(t - Tf ) CVU_F: (4-196) *i ,
J :

w__?

. )R ]

- a fu(t - To) - u(t -- Tf)} CT'J--_P: (4-197)

; _ wnere

an i :3o1 ._// '_

" a_ 811 ,

• • • ¢,

, g = , _-= , g= (4-198)

c • •

; a 4 c_3 °3 A

- _ ..

_T= [I,_, _ T"] (4-199) ' ;,_ p ! • , • ) ) ',,

" U_ = _ = L cos a r :os 8T (4-200) ,0 ' "

,, U_ : -_T --L s incos_TS;Tin_T-[ (4-201) :_ '_2_,,:

! i _' _'"

, 4-72 )

.... _)_,i___'_:_ "'_,_.'i_(i_'_w)_'_ _ I _ "_ ' "

q9760q 7203-q 92



J

4.9 RFPLAC]:MENT ACCELERATION !

_ 4.9.1 Replacement Acceleration Model

When accelerometer data is available from a spacecraft, this data, when properly _
" converted, may be used to replace the mode], of all nonpotential accelerations ,

(i. e., atmospheric drag, solar radiation pressure, thrust, and attitude control
system accelerations). Letting R_ represent the total acceleration as measured - .

i by an on-board accelerometer, and letting

',

RA =R D + RSR + RTAc + R T (4-202)

then Equation (4-1) reduces to

R = RpM + RNS + RIo + RA (4-293) }

It is u_derstood, ol course, that '.he acc_crations measured by the accelerometers _

at any instant of time need not represent all of the accelerations on the right hand _ /s.:
side of Equation (4-202). , .1

i) "-'The acceleration R A is comput_.:d from the following relationship _i

RA = Q _KA _ B] (4-204) ':

where Q is a 3 x 3 transformationmatrixfrom theaccelerometeraxes tothe o

Ii coordinatesystem ofintegration,K is a d:_gonalmatrix ofaccelerometerscale i
factor corrections (in addition to those scale factors used during the pre-processing
of the telemetered accelerometer data), B is a 3 × 1 vector of bias corrections i

"\ _ _.
(in addition to those biases, such _s zero sets, employed in the pre-processing),
and A is the 3 × 1 vector of external accelerations expressed in the accelerometec

coordinate system. , i_':

The matrix Q is comprised of a number of rotations: QA' the _ransformation

matrix from the accelerometer axes to the vehicle-fixed axes; QB' the transfor- 4

mation matrix from the vehicle-fixed axes to the inertial true of data system;

and, if necessary, Qc, the transformation matrix from the inertial true of date
_:_ system to the user selected coordinate system el integration. Thus, Q is de-

i termined by Q = Qc QB Q,, (4-205) ,'

i''
4-73 :
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1 .
i- where Q^ is a constant matrix, and QB is determined from

_ Q_ = f (_I'02' _3) (4-206) :

,f

: and _?t' _2 ' and 83 are the attitude orientation angles which relate the spacecraft
vehicle-fixed coordinate system to the true of date coordinate system, as described '
in Section 3.3.12.

4.9.2 Associated Partial Derivatives

:

, 3R A

5--_-. = Q _, [Ki+B] where i = 1, 2, 3

' ,' _=t. q(i,l) al f

:' // }:

_ :

".: ?R A

?k2----2= q(,, 2) a2 '_

SR A -

3ka3 q(, 31 a3 (4-207)

t •

-.. A
_-q(
_)bI i,I) ,,

_=q(
• ?b2 ,,2) )

?R^

?b a q(,, 31

..:.,!,{{'-i'_TL'_}t_T''-fifty{,)FT_
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?

where q (i,j)is the element in the i th row and jth column of [Q], and _ i and b i I
are the elements in the i th row of the vectors _, a_d B, respectively.

4.10 ANALYTIC PARTIAL DERIVATIVES

The differential correction process requires the develop, nent of a set of partia! i
a_riva_ives called the matrizant, or state transition matrix. These partial

d_rivatives give the relationships between perturbations in the spacecraft state
at observation times to perturbations in the slate at the epoch. Analytic expres-

sions for the_e partial derivatives which were developed ortginally for the_rouwer-L:;ddane method (References 15 and 16) are available for use with all

of the orbiL generators utilized in GTDS. The perturbation wriables utilized
I in the analytic partial derivatives are defined in such a way as to couple the

perturbation propagation process with the differential correction process. These
variables are referred to as the DODS variables.

4.10.1 Definition of the Perturbation Variables

In ,*he statistical estimation process, the spacecraft dynamic state variables in _ /"
are normally expressed in an inertial Cartesian coordinate system. As a result, ":J

_._ _ ) the estimator algorithm solves for the differential correction, _xi �œbe added
._ to the epoch state on the ith iteration, _i, to yield an improved estimate E_ L�_: Note that the unknowns that are solved for are corrections to the Cartesian state

variables. The variables for the Brouwer-Lyddane theory are also state correc-
t! tions, but are defined as follows: , _

- \

_a

x1 =--- (semimajor axis) ' -_
a

x2 = _e (eccentricity) ,

_,_.,x3 = eSf (true anomaly) _ :
(4-208)

x4 = 5a (rotation ;about 6) !

*_ x s = _fl (rotat ion about _) i

• _,_ x 6 = ST (rotation about _) !:
I

, _- x 7 =_r (radial distance) "
I

;_ 4-75
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;' xs = 8v (velocity)

na )_"- e2 cos E (4-208)

x9 = 88 (t ligPt path angle) (eont'd)

,: x19 = _i_ + 8_ (longitude of periapsis) ,

• Variables x1 , x 2, and x 3 account for in-plane perturbations of the orbit, i.e.,
• per_rbations in the semimajor axis a, the eecentric._ty e, and the true anomaly

f, respectively. The variable x 3 can also be related to a perturbation in the
mean anomaly M as follows

e¢'_ - e 2 (4-209)x3 = _M
(1 .. ecosE) 2

/

Variables x4 , x s andx 6 account for angular rotations of the orbit plane. Figure
__ 4-6 illustrates an orbit around a planet. The unit vector _ is normal to the orbit ,,

plane; the unit vector /_ lies in the orbit plane and is displaced from the ascend- ..'"

ing node by the angle 5. The uni*, vector _, torms a right hand system with

and _, i.e., _ = _ x/_. Variable x4 accounts.for the rotational perturbation _ [
sbout £, x s accounts for the rotational perturbation bZ about ;_, and x 6 accounts

Figure4-6. OrbitalGeometry

t
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i

_ for the rotational perturbation _7 about _. Variables x4, x s and x 6 can be re- )l

lated to the orbit incDnation i. the right ascension of the ascending node _, and i
the argument of periapsis _, as follows !

_i = xs cos _ - x6 sin _a '
a

x s sin 8 + x 6 cos_, = a a (4-210) i
sin i

x 3

b_= x4 ---- (x s sin S + x 6 cos _ ) cot i

,: The angle _ between the line of nodes and the _ vector defines the ;_ and _

" _i directions. This angle can be_0, _0 + fo, _+ f, or some other specified angle.

In the equations that follow, _ is assumed to be oJ + f, i.e., /_ is directed towards s
¢, a /_ ,,

the spacecraft. ,1 _

: _,_ _' Only six of the ten variables in Equations (4-208) are independent. Therefore, z

_ any six can be selected to be solved for in any o;'bit determination problem. The _
,.I selection criteria are dependent upon the sensitivity of the variables to pertinent

" _ characteristics of the orbit being determined. Experience has shown that vari- _
_ ables xl, x2, x3, xs, x 6 and xl_ are usually a reliable 3et of variables to use in

_: a variety of earth orbital missions. The dependence of the variables on orbital
characteristics is shown in Table 4-5.

¢

i
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Table 4-5 - [ *j,,
e

" DODS Variable Dependency
.7

k I ,r
: a e i 17 _ M E f r 6 _ V .:a

X v/ "f

! x 2 V •

! <x3 v/ V V V
A

? x4 ¢ ¢

x 5 ;/ _/ ¢ ¢

X 6 t / V' V/ v" :
;,

_ .... 1 I "_':
: x 7 ¢ I ¢ ,/ ,/ V V ¢ ,,:

J /P 'i
_ 2

•, X 8 ¢ ¢' V' ¢ v' ¢ _/ .
_T

x 9 C V ¢ V ¢ .... !'

= xl9 v/ ¢ v _ ,

The Brouwer-Lyddane theory was developed for use with drag-free orbits. _
However, for high altitude, small eeeentricity orbits the primary efteet of drag i .,
is a secular ehange in the mean anomaly. This effect is relatively small and is ' _:.

.: "_ noticeable only ove_ a long period of time. Consequently, an optional first order
correction to the mere _,anomaly is inc=aded of the form

2 _'_ (4-211)
AI_r_G = / , NpqCt- t )p ;_

qU0 p22 _ ,

m=0, 1.2 .... 19 ' _

where

N ", the Brouwer drag parameters )
Pq _

i 4-78
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,a

tq _ the reference time associated with the ._ "
Brouwer drag parameters

The correction is applied to the mean motion as follows ,,,

• (4-212) : :
M"= n0At + MAt + M0 + AMD_ G

Forty DODS variables which account for the forty drag parameters N inpq
Equation (4-211) are defined P_ _:

N2 'q ?
x20+q =_

n 2 _.

,!

q = 0, 1..... 19 (4-213) -

N3q

X40+q- n2 ./t'

.. These variables are ectimated by means of the differential correction process _
in order ;o determine _he secular corrections to the mean anomaly. _ _,

4.10.2 State Transition Matrix Elements

F The statistical estimation algorithm requires the matrix of partial derivatives :'

of the observations f(t ) at time t_ with respect to the solve-for state variable_ )
x at the epoch time t 0. These partial derivatives are computed as follows '°

"_ _f(ti) _f(t ) _7(ti) (4-214) ' ,_
i - _ j=l, 2 ..... 19

!_ The partial derivative of the observation model f(t i ) with respec_ to the oscu-

! lating Cartesian state vector r(t ) is modeled as described in Chapter 7. ttow-
_! ever, the partial der_.vatives of the osculating Cartesian stat_ with respect to _-.=4

_,: the DODS variables must be determined. Whe. _he Brouwer or Brouwer-!,yddane

! theor) is being utilized, _ (t,)/_ x j is ob:_ained analytically, where the solve- ' :
for wriables x are the DODS variables. When one of the other GTDS orbit

, genera,'ors is used, requiring numerical integration of tb.e orbital equations, two
:: options are available: (1) the reqmred partial derivatives can t_ obtained from _

':' numerical solution of the variational equations or (2) the above analytic partial ,

" 4-79
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derivativescan be used by replacing,via the chain rule,the required partial \- } f

derivativein Equation (4-214) with

.: _-f(t i) aT(t i ) _x k

?xJ ?Xk ?xi (I-215)"" - i

i

where, in thiscase, the x k's are the DODS variables,the firstterm on the right

: represents the analyticpartialderivativesof the osculating Cartesian statewith

respect to the DODS variables, and the second term represents the partialderiv-

:. ativesof the DODS variables with respect to the appropriate solve-for variables,

:' depending on the orbitgenerator being used.

The analyticpartialderivativesof the osculating Cartesian statewith respect

to the DODS variables are approximated by two-body Keplerian partialderivatives

:: evaluated using the osculating Keplerian elements at ti and to. This approach

.. j neglects the higher oroer effects of the Brouwer secular variation, as well as

_ the partialderivativesof the osculatingpositionand velocitywith respect to the

il Brouwer mean rositionand velocity. These par6ialdemvatives, which are de-

_. _ veloped in Reference 17, are presented below.
:' ,DJ •

:J]: 3 ' i :,
=7---(t- to)7 --_

?xI 2

(4-216a)

Dr -r 3 /_7(t- to)
- +

_xI 2 2 r3

": ?7 1 1
-- _ cos E0 + e) 7--(2- e 2 - e cos E) sine

-_, ?x 2 (1 e 2) n ¢!

(4-216b)

_r _ 1 loosEr /_sinE (1+ecosE_e2_e2 cos2E) 7]', _x_ (1 - e2) nr 2 #_

i
.,

t
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i

" 5___._= __a2 sinE [2 cos E0 + e sin 2 g 0 - 2e - (l - e2) cos E] _ .,.:
ax3 r _ 5 !:

}+ [I (2 cosE o +e sin 2E 0 cos E) cosE] ¢_ '

?_ ha4 {[1 + 2 cos _(cos g 0 m CeS E) '"

(4i216c) _

- e(cos E(sin 2 E + cos 2 E0_ 2 cos E0)
7

+ e2(2 cos 2 E + cos 2 Eo) - e 3 cos 3 E]

- _ sin E{(cos E0 - cos E) [e(cos E + cos E0) - 2]} (_ ._

°--Lr= _ × 7 /¢:
?X 4

(4-216d)

-Ctx r

. _, _x 4



"I" _' ,n

IIII I I I I|l I III II I I I _ lit "11 I | ____ i •

2:

_' bY - 2 ?? e2 07 ?7 "
_x 2

_ 14-216g)

_. _-, _ +(I-_)co_Z_- ,/T-J .,,i_Zo_ j. -- : ,_x2

?7

)_ ?7 _ (1 - e cos E0) _ + (1 - e2) COS E0 _2 - ¢_sin E0 ?-_-_; ?x 8 )x s
? 14-216h)

<_ _r _ (1 - e_,o_Eo) _¢ _¢ _?
_x8 _ + (1-e2) c°sE0 v_-_sinE 0

bx a

:.. (4-216i) "_1/

i %
_r;

i' a(1 - e cos E0)i
- [-,/1"-:'_s in Z_ + (I - ei)cos Eq]

: _X19 (I - e2) (I - e cos E)
"_ (4-216j) I

-_: _r a4n(1., e cos E)_ [(e- cosE)_-_sinEc_]

where _ and 4 are unit vectors in the orbit plane, with _ d._rected toward peruse,
and _t advanced 90 degrees in the direction of motion from perigee, i.e., q = a × p.
The parameter n is the mean mcti Jn.

: The B_ouwer mean eleme,,_sare utilizedwhen theabove equationsare used for

determiningthepartialderivativesattime t. Althoughthe Brouwer mean ele-
ments attime tare notdeterminedfrom two-body relationships,theabove equa-

l tions still provide a good approximaticn for the state transition mazrix elements
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fm the mean motion.

The par_:'al derivatives of the position and velocity with respect to the DODS

drag parameters x20, ....... , x59 are

t '_
_ __ n0r(t - q)'"

_X20+ q

(4-217)

-- (t - tq):: {(csc E- %) _ + _l--'_e 0 sin E_I]
dr _

_x20 +q _ r 3

q=0, I,. 19

and

3T
_T - n0(t - t ) '._

• q

i_ _X40 + q _X20+ q '_

(4-218)

- no(t - tq)
_-X4o+q _x_o, q _}

J

q=0 1 i_ ',• , .o't

4.10.3 Conversion ,'f Differential Corrections

Use of the preceding partial derivative_ results in the expression of the state
perh:rbations at epocb time in terms of DODS variables. Consequently, the
weighted least-squares estimator algorithm yields the differential corrections
in terms of DODS variables,These correctionsmust then be conv,-=rted into

more meanlr_ful variables, such as Kepleman elements or Cartesian compo-

nents. Specifically, GTDS converts the DODS corrections x t , x._ ..... , x_.
into corrections of the Brouwer mean elements, i.e., gevl,=ri.%_ _l_wents. The

reference mean elements at epoch are _cli upaated to begin the next iteration.
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As described in Section 4.10.2, when analyt e partial derivatl,tes are ueed in / ,.
GTDS with orbit generators other than the _rouwer or Brouwer-Lydd_ae tech-

_i niques, the statisticai _stimation algorithm is modified by introducing the paL'tial
derivatives of the DOD8 variabl; _ with respec" to the solve-for state variables

,_ appropriate for the o_'bit generator in ,_se. The estimation algorithm then yields

the differenti_J corrections in terms of these solve-for state variables, i

Only six of the DODS variables described in Section 4.10.1 are independent. :
The user has the option of selecting which elements are to be corrected. The _

_ following conversion equations show the dependency of the mean Keplorian

i element corrections on all the DODS variables; however, only the six independent :._
variables selected for inclusion in the differential correction process should be

? included. All the other DODS variables 3hould be set equal to zero. The follow- :i
ing equations also include the conversion relationships for the related variables

_ E,f,r, 8, _ andV. _.

ii Aa = ax 1 + 2ax 7 + a3_sx 8 ):

Ai = xs cos _e - x5 sin b
- i • =

_,T

'
i

A_- (xs sin b + x5 cos _a)sini " _
(4--219) i

\_" 1 !
A_ = ---x 3 + x4 - _z2Xs - _3x_ - (ax7 - _ '_

e _7x8 - _9x9 _ _,,,

AM ":-1 "e _xa +_3r'_x_+_7_'_x_+_x_ +_x_o _ , ":
t

5z: z

t
1 "

4-84 i

!

| i ,.

9760 7203-204





i •

(1- e 2) a 2 r 2 COS: O :
-_6 " -- ?2e _-

_s _5 (2ae + re + r cos f) - a 3 (1 - e2) i :

re sin f

¢. .-:

k

rV 2
_r8 =_sir, 0 cos 0

- /zae 'i

2,

_9 = _s(2ae + r cos f) ::
e s i n f (4-2201 ._

_" (cont'd)

': 1 - e cos E "' r -
'_: = 10

; ?

_' _11 = (1 - e cos E) 2 ;_
!: vT-EWz"
y, _

:2 ., ;

t

: \ cos i sin _ ,,,, _.

.. ",,. {12 = sin i i,

" cos i cos _ a

: sin i 4
,: _r'

i

1'
R_RODU_IM_ 01_1_t_ _.
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: 4-86

.r

1976017203-206



1 .... ]

4.11 REFYRENCES

I. Brouwer, D. and Clemence, G. M.: 1961,Methods of CelestialMechanics,
Academic Press, New York. -**

2. Danby, J. M. A.: 1962, Fundamentals of Celestial Mechanics, Macmillan, _" ',t
New York.

3. Escobal, P. R.: 1965, Methods of Orbit Determination, John Wiley & Sons,
New York.

4. gaula, W. M.: 1966, Theory of Satellite Geodesy, BlaisdeI1 Press, Los
Angeles, California. _,

5. Sturms, F. M.: Equations of Motion for a Double Precision Trajectory
Program, Volume IV, Jet Propulsion Laboratory Report SFS 37-29.

6. Moyer, T. D.: 1971, Mathematical Formulation of the Double-Precision ;.
Orbit Determination Program (DPODP), Jet Propulsion Laboratory Technical

Report 32-1527, May !971. . /,_

O 7. Jacchia, L. G.: 1960, "A Variable Atmospheric-Density Model from SatelliteAcce!erations," Journal of Geophysical Research, 65(9), pp. 2775-82. _

8. Jvcchia, L. G.: 1963, "Variations in the Earth's Upper Atmorphere as :

l_evealed by Satellite Drag," Rev. Mod. Phys., 35{4), October 1963, pp. 973-91

9. Jacchia, L. G.: 1964, The Temperature above the Thermopause, Smithsonian
Astrophysical Observatory Special Report No. 150, Cambridge, Massachuset_., •

April 1964.
,

10. Harris, I. and Priester, W.: 1952, "Time Dependent Structure of the Upper , :
_tmosphere," Jour. Atmos. Sciences, 19(4), July 1952, also NASA TN D-1443.

11. Harris, I. and Priester, W.: 1962, Theoretical Models for the Solar Cycle
Variation of the Upper Atmosphere, Goddard Space Flight Center Report :_

NASA-TN-D-144, August 19_Z.

12. Harris, I. and Priester, W.: 1965, "Atmospheric Structure and Its Variations [ %'

in the Region from 120 to 80 KM," COSPAR International Reference Atmos- ' _,
phere (CIRA) 1965, Space Research IV, North Holland Publishing Co.,
Amsterdam.

_.

4-87

i
I ! IlL_' ' P ,11 I | I IN | ..... "I

1976017203-207



13. Jacchia, L. G.: 1971, Revised Static Models of the Thermosphere and /
Exospnere with Empirical Temperature Profiles, Smithsonian Astrophysical
Observatory Special Report No. 332, Cambridge, Massachusetts, May 1971.

14. Roberts, E. R., Jr.: 1971, "An Analytic Model for Upper Atmosphere
: Densities Based upon Jacchia's 1970 Models," Ceiestial Mechanics, 4(3/4),

December 1971, pp. 368-377.

15. Brouwer, D.: 1959, "Solution of the Problem of Artificial Satellite Theory
• without Drag," The Astronomical Journal, 64(1274), October 1959, pp. 378-

397.

16. Lyddane, R. H.: 1963, "Small Eccentricities or Inclinations in the Brouwer
Theory of the Artificial Satellite," The Astronomical Journal, 68(8),
October 1963, pp. 555-558.

., 17. Goddard Space Flight CPnter: 1971, Definitive Orbit Determinahon Operating
System Description, Edition II, Goddard Space Flight Center Report "
X-544-71-35,January 1971.

?

y

i

4-88 "

i J

1976017203-208



• f-

i j

t [

e.

CHA P'rER 5 ._

t

FORMULATION OF THE ORBITAL EQUATIONS OF MOTION

5.1 INTRODUCTION ,

Direct analytical solution of the differential equations describing the motion of

a satellite perturbed by the total acceleration vector (Equation (4-1)) is not "=

_ possible. Historically, solutions tc this problem have been obtained using two :

i principal approaches. In one approach, known as the General Perturbation :
Method, the perturbation model is limited such that an analytical solution is i:
possible. Brouwer theory is a well known orbit generation technique which falls ;

in this category. Brouwer formulated the problem of an earth satellite, perturbed

by point mass and zonal gravitational effects, in terms of canonical variables

: and analytically solved the resulting Hamilton-Jacobi differential equations to :

first order in a small parameter, using the Von Zeipel method. The resulting t _:
orbit generation method is extremely efficient, but its accuracy is limited by .i-,

the restricted perturbation model and the truncated small-parameter expansions :

, L (Reference I).

_ In a second approach, known as the Special Perturbation Method, me entire :]"

_ perturbation model can be included in the differential equations (also known as the :

equations of motion). The differential equations are solved by the numerical _ i

integration techniques described in Chapter 6. The Cowell method is the best __

[ known orbit generation technique which falls in this category. In the Cowell ,'
: _, approach, the equations of motion are expressed in terms of the total accelera- :

_ tion vector (i.e., point mass central body effects plus perturbing accelerations) 4 ._

"'"_i'_ and solved directly for the position and velocity vectors. _ ,

Recently, considerable research has focused on improving the accuracy and _ _efficiency of orbit generation methods. This research indicates that there is '-_ i

no best orbit generation procedure for allorbittypes. For thisreason, several 1 _

• _ orbit generation formulations are included in GTDS; taken together, these _ ,rformulations are suited to a broad range of accuracy and efficiency requirements

• _,_% for the various classes of satellite orbits supported by GSFC. 1 ": _:
_,,_, In generai, development of optimum methods for orbit prediction consists of ;

_, reformulat!ng the equations of motion in terms of a new set uf variables such

: i_,? that the rest, Ring equations are more amenable to solution. The principal guide- _:
: _, lines used in these reformulations are the following:

]_" 5-1 :'
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_ 1. Choose a dependent variable set which is appropriate for the numerical - )
: method of solution.

General Per_._rbation Methods usually require the use of canonical vaI ables,
which are amenable to the use of averaging transformation techniques _uch as _.

the Von Zeipel method; similarly, in the Special Perturbatior Methods selection _" I

of appropriate variables may be dictated by the numerical methc'd of solution.
For example, the accuracy of numerical integration formula_ increases with

, order. However, each integration formula has a numerical stability region,
_ outside of which the error growth is expcnential (see References 2 and 3 for a

more complete discussion of numerical stability). For a given set of differential
' equati,ms, this stability region dictates the allowable stepsizes. As a result,

changing dependent variables may affect the stability characteristics of _e i
• process.

Reformulations of the Class II equations of motion* in terms of other dependent

variables usually results in a set of Class I equations of motion*, e.g., the

Variation of Parameters equations (Section 5.7). In general, Class I multistep

numerical integration formulas (Equations (6-21) and (6-26))_ave smaller regions (

of nr_merical stability than the Class II multistep metheds (Equations (6-22) and /,_
(6-27)). Consequently, the numerical stability characteristics ._f the transformed ._
equations of motion are a very important consideration.

"Well-behaved" equations of motion, i.e., those which change only slightly due to

-_ a small change in the elements, will yield large regions of numerical stability '_"

in terms of stepsize, thus allowing the use of the accurate high order formulas.
• For example, element sets which are constants, or vary linearly with time in the :

unperturbed problem, yield equations of motion which are more numerically stable _',i
than the corresponding set of equations expressed in terms of the position

and velocity coordinates.

2. Choose an independent variable so as to achieve uniformization of local error

• over the entire orbit. _i"
; ::

Efficient numerical integration can be achtcced by adjusting the stepsize to obtain
uniformization of the local error over the entire orbit. For near-circular orbits,

_ fixed step integration produces uniformization when time is the independent <
. variable. To achieve uniformization for eccentric orbits, a mechanism is /

required for using a small time step in the region of large perturbations, and ,

a large time step in the region of small perturbations. A variable stepsize

Class I differential equations are of the form dy/dx -- f(x, y); Class IIdifferential equations

are of the form d2y/dx _ - f(x, y).

BEpEobUCIBILITY--OF
ORIGINAL PAGE IS POOR
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integration algorithm's available in GTDS (see Section 6.9); however: frequent ,_ _
stepsize changes are costly and usually introduce error. For this reason,
formulations have been developed which achieve uniformization through analytic _ _:
stepsize regulation, accomplished through the use of an independent variable _

other than time. A new independent variable s, related to the time t by _

i
ds = _/_ dt (5-1) .i

is available in GTDS, where r is the mag'_2tude of the satelliteTs position vector
and n is known as the uniformization constant. The effect of such a transforma-

tion is that fixed steps in s yield smaller steps in time for small r (where the i
perturbations are usually larger) than for large r.

The appropriate choice for the uniformization constant depends on both the de-

pendent variable set and the local error source. In the Cowell method the primary _ ;,
source of local error is inaccurate integration of the point mass and J2 grave-- -: :;
tationaleffects of the earth. A uniformization constant of 3/2 is appropriate for _ _"

these perturbations and is used in the Time Regularized Cowell orbit generator _

(Section 5.3). The Delaunay-Similar (DS) equations of motion (Section 5.5) are I

_J uniformized for the J2 oblateness perturbation through the choice of a uniformi- _
zation constant of 2. The Kustaanheimo-Stiefel (KS) iormulation (Section 5.4) _ "_

uses a uniformization constant of 1, v,hich removes the singularity at collision

from the equations of motion. In the Intermediate Orbit formulation (Section 5.11), _,
the uniformization constant can be adjusted to p_'oduce uniformizatio_ with _;

respect to the dominant source of local error. It should be noted that uniformiza- i ::
k

tion of local error cannot be achieved through analytic stepsize regulation alone ! ,
for highly elliptic, long period orbits, for which both the nonspherical effects _ ._

'_'_. of the earth and lunar effects are equally important. In suchcases, a variable i' _"
stepsize algorithm is also needed.

3. Choose a dependent variable set in terms of which the solutions to the un-
perturbed problem are closed, explicit expressions in the independent "°
vari able.

_i In General Perturbation applications, the need for such dependent variable sets ._
_ is clear. However, such variable sets also are advantageous for use in Special ,

i: Perturbation Methods. Differential equations for quantities which vary slowly :_
t"

_' and smoothly withtime are known tobe more amenable tonumericalintegra- "'

tion methods (i.e., more numerically stable) than those for quantities which vary ,_

rapidly. In the case of satellite motion, the acceleration caused by the attraction _.

5-3 __,, • ......... _ ,, , .
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/
of the primary body is usually much greater than the perturbing accelerations .1. "

arishig f_r.m other bodies, nonspherical effects, etc. Since dependent variable
sets exis_ which yield closed, explicit solutions to the unperturbed problean_ i_ is
logical to remove the poin_ mass effects of the primary body from the differential
equatio, hv considering the relative ell._ptic orbit described about the primar:v

: as a first approximation to the motion. Thus, the equations of motion oi such '
dependent variables include motion arising only from the perturbi.w_ acceleration i

: vector Methcds which employ this approach are known as Variation of Param- :
_ . eters(VOP) methods (Section5.7).GTDS includesVOP orbitgeneratorswhich i

° use Keplerian, equinoctial, rectangular, Delaunay-Similar (DS), and Kustaanheimo- _i _.

Stiefel (KS) element sets. The resultant formulations vary with respect to ! =

• regularity of the dependent variables and the choice of independent variables, i
•- ( -.T-_ also includes the Intermediate Orbit formulation, it, which the equations

of ,ration represent the variation, arising from other perturbations, about the

solution to the point mass earth plus J2 problem.

. J!
)

: _ 4. Choose a completely regular dependent variable set.

It is desirable, from the standpoint of generality, to use a set of dependent _
: variables which is well defined, or regular, for the ful! range of possible orbital .J
: conditions. For example, the Keplerian an2 Dclaunay variables are not well ;
,. defined for small eccentricities or for small or near 180-degree inclinations. !

Unfortunately, regularity and the requirement for tractable canonical formula- }
tions of General Perturbation Methods appear to be mutually exclusive. For this

reason, the Brouwer-Lyddane formulation was developed in terms of Poincar_ ,__
rather than Delaunay variables for use with small eccentricity and small inclina- _

tion satellites. For Special Perturbation applications, the KS and rectangular .!
variables are completely regular. The equinoctial elements consist of two

: variable sets which together yield a completely regular set except at collision, i ._.
: I

: -, 5. Choose a dependent variable set for which the equations of motion are
completely regular.

The practical effect of singular,.ties in the equations of motion is to cause rapid
oscillations in some of the orbital elements when the orbit is in a near-singular

condition. This condition is not desirable from the standpoint of efficiency in _:

numerical integration. Accurate integration of such equations requires extremely
small stepsizes in the near-singular region. The rectangular variables and

equinoctial elements yield completely regular equations of motion except at
• co?,llsion. The KS equations of motion are completely regular, while the VOP
. equations of motion are singular for the Kepler and Delaunay elements at small

eccentricities and at small and near 180-degree inclinations.

5-4
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£. Choose a dependent variable set such that the equations of motion have
dynamically stable solutions for the unpcrturb,_d probtem.

A solution is dynamically stable if small ,,,ariatior_s _,i the initial values produce :;

a variation of the solution whici_ rp_,r.ains small for any value of the independent i*variable greater than zero.. Dynamic stability is one of the primary motivations _ i i

I foltheKS transformation.This characteristicshouldbe particula-lyadvantageous i

when t,-_ sel,_,t!on is obtained via numerical integration.
i

7. Choose an element set for which the equations of motion do not contain short
periodic effects. _

i As mentioned previously, the efficiency of numerical integration is or)timal for

the integratio.n of variabies which vary smoothly and slowly, Elimination of !
short periodic effects from the equations of motion significantly smooths the i

_ dependent variable motion, thus allowing the use of very large stepsizes. The i
Intermediate Orbit elements and the Method of Averages (Section 5.8) use this
approach. The equations o_ motion of an averaged element set are integrated.

The resulting orbit generation method is extremely efficient, but is limited to J_

average element accuracy rather than the osculatipg element accuracy achieved </. .
in high precision methods.

:. _. . Itshouldbe notedthatseveraloftheguidelinesstatedabove are mutuallyexclu- i,
: _:: sive. The requirements of the specific application dictate which of the guidulines :

I are most important. The characteristics of the orbit generation methods available :: ,_- in GTDS are summarized in l'ables5.1 and 5.2.

The choice of an optimum orbit generation method is dependent on orbit type, ,
accuracy, and efficiem,y requirements. In general, the reformulated high pre- i

cisio_ methods are more accurate than the Cowell method. However, the tram,- _
i fSrmations required in these formulations im.:ease computational time; there-

_, fore, these methods should be used only for orbits for which they yield improved

_ accuracy at larger stepsize_ as compared with the Cowell method, or where these , ,_
methods have a more appropmate methocl of analytic stepsize control than does

Time Regula,'ized Cowell. ;:

._ For circutar orbits, analytic stepsize regulation is not necessary. In fact, inte- .
h, b

_ gration of the time equation increases computational time and may introduce .

._ errors into the solution. For orbits with eccentricity greater than 0.1, analytic _ ,
stepsize regulation is usually beneficial. The independent variable is therefore

_1' an important consideration in the choice of the orbit _eneration formulation,
_ As the uniformization constant is increased, the si:.e of the time step at perigee _!

:: decreases and that at apogee increases. T:,is constant should be chosen so that
_j the localerror isuniformizedover theentire_rbit. i

. ": 5-5 i
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For applioafl._as _ich re_;L_: "lE._ (_fftclency, it is important to consider the "- ,_
• number of outlast poists which _ r_ired. Using analytic methods such as
: Brouwer theory, th_ co_,tat_vKt _c_ is directly proportional to the number
,: of output points. H,_w'_.':er, wh,_ aume_'ical integration is used, the cost is

_ainly dependent on the _rc !@_glh aud not the number of intermediate outVut
points. For DC applications, the computational cost of the averaged orbit gen-
eration methods is often competitive with tha_ of Brouwer theory and offers

• conslderably greater flexibility with respect to the perturbation model.

5.2 COWELL METHOD
-i

i The Cowell equations of motion of a satellite are expressed by the general ,:
: formula ?

_: _,._ where Y -_ t.he position vector in an inertial Cartesian coordinat_ system #::
-_ t -,., the physical time r"t

" the gravitational constant '[ 1 i_:
:: P the total perturbing acceleration :'

, P can include any of the perturbing accelerations discussed in Chap_r 4. <

, This set of three CLss H differential equations is so1_ed directly for the position

vector using the St_rmer-Cowell num_rical integration formulas (Equations °'
(6-22) and (6-27)). The three Clas._ I equations for the velocity vector _ ,i

- +_ (5-3)

"4,?._,

are integrated using the Adams numerical integration fcl ;u¢lar (Fquatlons
,: (6-21) and (6-26)) in the case of velocity dependent perturbations, such as

atmospheric drag. , _

The Cartesian coordinates ,.-.d the equations of motion are regular, except at / _
collisiou. Thismethod can be used for elliptic, parabolic aria hyperbolic orbits. ' _"

The point mass gravitational attraction of the primary body appears explicitly ',

the equations of motion, and is usually the dominant acceleration which must i
be integrated.

REPRODUCI_ILITY " __-s OF THE
0RI_AL PAGE IS POOR
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il _,_ For cL .'_ar orbits, the choice of time aa the independent variable produces

_. uniformizadon of the local error with r_pect to the integration of the two-body
;: acceleration. The Time Regularized CoweU formulation (Section 5.3) was 1 J

developed to achieve unKormization of local error in the case of noncircular ._
orbits. ._,_ _'v

5.3 TIME REGULARIZED COWEI,L _ ".'

Efficient numerical integration is aided by untformization of the local error at _-

each integration step. To achieve un!formizatlon of )ocal error using the CoweU !• method, the equations of motion (5-2) and (5-3) must be uniformized with respect
t

to the dominant local error source, which is generally the point mass and J_ _ ;

_ol gravitational accelerations. These equations are already uniformized fnr circular ! i"
orbits. For noncircular orbits, however, uniformization is achieved by reform- _ :

_ ulating the Cowell equations in terms of a new independent variable s, deftned by i
the relationship _

d t r_ i_,i" "_
,

where n is the uniformlzatlon constant. The resulting equatiens of motion are

i called the Time Regularized Cowell equations. The choice of 3/2 for n uniform- _,
izes the local ez ror with respect to the point mass and J2 gravitational effects. ..

Under this general transformation, the Time Regularized Cowell equations of ' '._.

, motion become ,.

\ "r" --" n _ - r (2n'3) 7 + _P , 7, --7' 15-_; ,:
_,: _ r / /_ r n _ _

O,

where the prime notation refers to differentiation with respect to Ü�¤;
variable s. This equation involve_ derivatives with respect to the variable s only. _ ,_

The position vector is obtained by integrating Equation (5-5) using the Class i._ i
_ St_rmer-Cowell formulas (Equatt _s (6-72) and 16-27)). The velocity vector is ! _

obtained by h_tegrating Ec_ation (5-5) u_h_g the Class I Adams formulas (Equa- _ -_
_ ___ tions (6-21) and 16-26)). Since the voiocity appears explicifly in the equations i

! of motion, the velocity equatlo_ must be integrated even in the case of velocit_ i i_
free perturbations, In add!tion, the following Class II equation is integrated for } :,

the timu _

t" nr_n'l /" (5-6) _ i

_" 5-9 _ ."
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Comparison of the Time Regularized Cowell and the Cowell integration schemes
indicates that the favorable properties of simplicity, precision and adaptabilityr
are shared by both methods, while for highly eccentric or drag perturbed orbits _.
the analytic stepsize reguJation afforded by the Time Re_iarized Cowell is

sub_rior. _
f

._
T
3

• 5.4 KUSTAANHEIMO- STEIFEL (KS) FOBMULATION _

By means oftheKS trarL_forma_ion,thenonlinearequationsoftwo-body motion _

_ are transformed to a _et of linear, dynamically stable differential equations, :
/ similar to those of an unperturbed harmonic oscillator (see Reference 4 for a
_ complete derivation). This trausformation consists of choosing a set of regular -:

dependent, variables such that the resulting differential equations are regular,
i.e.,have uo singularities.Regularizationof hhedifferentialequationsrequires

•_ theextensionofthepositionand velocityvectorsfrom flxreedimensionalto four
#
' dimensionalvectors. The singulacityat collisionis removed by choosingthe :.
: generalized eccenfric anomaly E as the independent variable such that

7

dE_ 2_ (5-7) _

-°.- dt r L.) _ :"

where the frem!cncy _ is related to the negative of the total energy _ -- ,/h/2.
InaGaA_ton,thistransfccmationproducesanalyticstepsizeregulationwitha
aniformization constant of 1..herefore, a time equation must also be integrated. ,;
A time element r isintro_.Icedsuch that _ _il

- 1 (5-8) _t =_r---(_, _') ,,

where _ _nd u' ar_ thetransformedposition_nd velocityvectors(u" du,/dE), ,.i_
and the notation (E, _') denotes the scalar product of the two vectors. This time :
element varies linearly with the independent variable for unperturbed motion _

and is therefore more amenable to numerical integration than the time equation.

(See Appendix B for a more detailed discussion of time elements.)

Regularized equations of motion behave _onsiderably bet,er with respect to
numerical integration than the corresponding nonregularized equations. For

unperturbed two-body motion, every solution to the regularized differential

equations is dynamically stable. Thi_ means that small variations of the initial
values produce a variation of the solution which remains small for any positive
value of the independent variable. Dynamic stabilization of the, KS equations of

!

5-10
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motion is accomplished by using a time element and by including as a dependent
variable the frequency _, which is related to the t_l energy, and taking advantage

Iof the fact that it is a constant of the motion fcr conservative forces. Consequently,
a total of ten equations of motion are integrated.

The KS equations of motion axe formulated as VOP equations in terms of regular
elements: The frequency co, the time element r, and the two 4-vectors E and _.
Elements are quantities which, during unperturbed two-body motion, are con-

stants or linear functions of the independent variable. The advantage of intro-
ducing elements is that they vary almost linearly if the motion is subjected to
weak perturbations.

5.4.1 The I_S Variation of Parameters (VOP) Equations of Motion

The KS equations of motion axe VOP equations in Lagra_gian form. The equations
for the 4-vector elements E and _ are

{_ Iv (_u P)I 2rico t "E_J (a) ._/_'

dE 1 r _V _ 2LT +- _ sln
=

(5-9)

____ (_ IV (___ _)1 2 doo t E (b)
r dV 2LT +- -- _' cos-

d__ I _+ d- - 2dE co dE

while the equations of motion for the time element T and the frequency _ are

d_ 1 r I_bV _I 2dec
-- = _ (_- 2rV)-_ ,--- 2LT (U, W) (a)

",_ dE 8o_ 16cc3 ?_ co2dE

1
(5-10)

t

d" _ r bV 1 (b)

!

Inthe above equations ,

_ V _ perturbing potential function

I_ P -_ additional perturbing accelerations
tx ,,- gravitational constant

• I! _ L KS transformation matrix defined by Equation (5-21)

5-ii
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In GTDS, the perturbing potential V which is -_ed is the potential arising from

the J2 nonspherical effects

- v = _3 z2 1 15-n) °,
: 2 3

where R is the radius .Jf the central body. The quantity _ represents the per- _*
e

_ turbing accelerations due to higher harmonics, drag, radiation pressure, etc.

The components ofU_ the transformed position vector, andU', the transformed "'
/ velocity vector, are obtained from the elements as follows

?

E - E
fi:: E cos - + flsin-- (5-12) :i

?

_'] I E sin E 1 g (5-13) _':;
4 U' : 2 2 + 2_c°s 2 ._

I 'The magnitude of the position vector is

s

The position vector F of the satellite is computed for use in the evalue_ion of the :.
perturbing accelerations using Equatio1_s (5-37) through (5-39). The velocity ¥ ,_

: is also computed in the case of velocity dependent accelerations, using Equations .::
,, (5-40)through(5-42).The physicaltime iscomputed from

t : _ _ _1(U, U') (5-15) ,
OJ

f,

The notation (u, u') denotes the scalar product of the two vectors.

_: The transtor;ned components of the perturbing accelerations are computed as :.
t

(LTP)I: ulp1+ u:tp2 + u3p3 {5-16) :
A

5-12 ;_

1976017203-220



i _ /

t

t
(L:p)2=_ u2p1 + alp2 + u4P3 (5-17) t

' (LTP)3 = - u3P 1 - u4P 2 + UlP 3 (5-18)

i

(LTP)4 = u4p I _ u3P2 + u2P3 (5-19)

5.4.2 Transformation from Cartesian Position and Velocity to KS Parametric
Values

The KS transformation is defined as

k- : L(u) • _ (.5-20)

where _ is a vector whose first three componentz are the Cax_esian position
coordinates and the fourth component x4 is aDcays zero, i.e., x = (x, y, z, 0).

• The matrix L(u) is the KS matrix with components given by "_"/_

u_ -u2 -u 3 u4

I U2 U 1 "4-I4 --L!3L = _ (5-21)

Ll U4 U 1 U2u 4 -u 3 u 2 -u 1
\

The elements of this matrix are computed as follows.

Assuming Chat _ and r are given at the instant t = t o , the radial distance is
computed from

e

and the frequency from

2w2 _ # 1 i_12_ v (5-23)r 2

_,. 5-13i
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where V represents the perturbing potential, which is the J2 potential in GTDS
{see Equation (5-11)).

If x > 0, the parametric state vector is found from

1 (r + x) (5-24) !- �,,.'-

-" t

.,4 I "

": u2 - YUl + zu4 .. (5-25_. 'r+x , :

zul - YU4 (5-26) ' +' U3 -
: , r+x

i
a

": "-_ or, if x .<. O, from i, / I._

1 (r - x) 15-27) ]

YU 2 + zu 3

u 1 - (5-28)F _ _'- "_,
,_"

\

zu2 - YU3 (5-29)UA -
r - x

The derivatives of the transformed position vector with respect to E are "

, 1 (ul_ + " + u31 ) (5-30)
'- U I = _ U2Y _ ' )

• L
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?

, !1 15-31)
tl'2 = _ (-- U2X "{"ulY + U4Z)

, I (5-32) _-!
%=_ (-u3_-u4}+u,__)

u4 = _ (I,4__ uSY + U2_) (5-33)

The initiM value of flxe time element is

1 (5-34) "_
w

If E = 0 is adopted as the initial value of the eecen_ie anomaly, then _ /

a.--U ',

_' and

: 36)_ - (5-

i!_ !
!: 5.4.3 Transformation from KS Parametric Variables to Cartesian Position _i
T: i

., _. and Velocity. _ .

4 Using Equation (5-20), the Cartesian components of position are calculated from !

": 15-3s) i
_ 2 (u 1u2 •_:,, Y = - '.13U4) #

_, i ,

i '
,_} 5-15
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_nd the Cartesian velocity components are determined from - J +

,+,

r .;
/

L

t

I 0

_. _, = --_ (u2u; + u,u 2 - u+u3 _ UaU_) (5-41) ,_.r i

{

?

= __4_(,J,u; + u4u _ + u,u; + u2,J_) (5-42) -+
- r _

: j 5.5 DELAUNAY-SIMILAR (DS) ELEMENTS
:1

• _ The DS method i_ ._ vOP formulation which was developed using the generalized ,,
: true anomaly as the independent variable, such that ._../ ,

i dt r 2 (5-43) "_}--" i

'[°:_. ds G _- ';

• where L, G and _ are defined later in this section (see References 5, 6, aud 7
for a more complete discussion). +

This choice for the independent variable is particularly appropriate for numerical -_

' inte_'ation of the oblateness perturbation. The dependent variables are a gen- +
erallzaUon of the classical Delaunay elements and are singular for e = 0, i = 0 ":
and at collision. The transformation of the equations of motion is carried out ;

in terms of canonical variables. This approach leads to the requirement for a
canonical variable, conjugate to the physical time, which is the negative of the
tota! energy. The resulting set of equations of motion is unitormized with respect
to integration of the J2 nonspherical perturbation.

The geometricaland physicalinterpretationsoftheeightDS elements forthe , +_
unperturbed problem are:

7_ _ thetrueanomaly ,,

g _ the argument of pertcenter r i '
5--16
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h _ the longitude of the ascending node !
_ the "mean" meananomaly

_ a measure of the perturbing energy, which vanishes in unperturbed motion

G _ the total angular momentum i

H _ the z-coml_nent of the angular momentum

L _ the total energy I

1where L_ is the initial value of the total energy.

This set ot DS elements contains one fast variable, the generalized true anomaly _.
The element _ has been defined such that it is a constant in the case of unper-
turbed motion.

For the two-body problem, the DS elements yield closed and explicit solutions
in terms of the independent variable. Not all of the DS elements are osculating.

The reason is that the orbits are situated on the energy surface .:...,,I#_

F = F0 + r2V = 0 (5-4_)

i where F0 is the unperturbed Hamiltonian.This energy manifold depends on the perturbing potential V. To comFute the

i osculating elements at a certain time, the potential V must be set equal to zerosince, by definition, osculating eleme_:ts represent the Keplcrian position and :_

, _ velocity with respect to the moving coordinate system inherent in the VOP

\ _ equations of motion.

"" I The DS elements vector is denoted by _,'" (_i' _2' °'3' %, _s' _6' "_7' %) : 6/, I_, h, *, 4_, G, H, L) (5-45)

in the sections.
following

5.5.1 The DS Variation of Parameters (VOP) Equations of Motion /

The DS equations of motion, which are VOP equations in canonical form, are as
follows

,_ +v_ds _:ti+ 4 _'_x+4 _ j • i

i=l .... 4

. 5-17
_,
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da +a _ V --3 _ DiJ _ p_ -• ds _a.
;, t j'l "',

i=l .....4

, where x t , x 2 , and x 3 are the three components of r and x4 is the time. V is the '
perturbingpotentialgivenin Equation(5-II),and thescalingfactorq defining

i the time transformation in Equation (5-43) is given by

: q=a5 -_" s -

: The unperturbed Hamiltonian Fo is given by

-; I _ (5-49) ,

_' _ '/2a s
t /

. _-. i and its derivatives by _""

3Fo (5-50)
: - 1
; bas

,)
.?

_Fo (5-51)

:" _a 6 ',.

_Fo (5-52) _

0:) 7

?Fo
- 15=53) :_

(2%)J/: '

is theadditionalperearblngaccelerationvectorexpressedinrectangularco-

ordinates.The e_enslon ofphase space by _e inclusionoftime and totalenergy .}
: as variables results in the introduction of an additional canonical force ;

5-_8
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i

:e

f

_F o _
P4 - " P (5-54)

_r

The elements of the 8 x t matrix D, _r

_(x I, x2, x3, x4)
D = (5-55) 4

_(a 1 , a 2 ..... a8)

are computed by the following relationship ._

_-:. "Sx. 8r i

_ _a. -- ?a. ri + r _a. (5-56)
• _ _ J J i:l .... 8 :

where

(5-57)_ rj : cos(% + %) cos % - sin(% + %) sip a3 cos I

_: (5-58) ""• . r 2 = "os(a I + a2) sin a3 + sin(a I + a2) cos a 3 cos ! ._"

• " r_ : sin(% + _2 ) sin I (5-59)

and

cos I - (5-60)
a 6

sin I = sign (aT) a_ (5-61)

4
t,

:_ pr : _._-a_
1 + e cos _ '---' (!,

?

_ p : _ _ as + _ (5-63) :..

i, _]_ 2'-,s p ': :e : -_ (5-64) ,:

, 5-19
?
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The p_s'tial derivatives of -r1 , r2 , r3 , and x 4 art.. Oven lu Table 5.3. The "- I
_ parzlal derivatives of r, p, q_ and e are give5 iv Table 5.4. The vector ?(r2/q)/_a

.:

: is evaluated using the relationship

? (_)_2r ?r r2 _q 15-65)q b,zi q2 ba i

" The conservative accelerations present tn V give _ise to a differential equation
for L, the total energy of the orbit,

dsdL-r2 (orp:)q _']4- (5-66) :

where

• ?
: ?V (5-67) _

; Therefore, L is a const'mt in tlas case. This fact is exploited in GTDS by not ,_.../_
integrating, the equatio:_ fo _ L numerically when only conservative forces are _
present. This a_ c,.us c_mulative magnified errors in other elements which are

: driven by siaa_.i numerical errors in L. _ . t _

5.5.2 Transformation from Ca, tssian Position and Velocity to DS Elements ::

It is assumed that r, r, a_d t ar_ given. '_norder to numerically integrate the _ :
: DS equ_ttions of mo_ion, the initial values of the DS variables are computed. _

The total angular mementtm_ G is computed from t -_

G = _/ + + G (5-68) i ,
;

where 1

-- r × r 15-69_ ,

The z-compvnent of the angular momentum G is given by i :'

H = G_ 15-70) I :
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_-_ The total energ3" L is computed as
v i

i i,= lv2+__V (5-71)
:_ 2 r

where
j_

r = vx_"+ y2 + z 2 (5-72) _

I i t

= " _2 i2 (5-73) :V _/X 2 + +

and V is given by Equation (5-11).

:: The perturbing energy ¢ is _5

i • = G - >/O2 + 2r2V + _ (5-74)
2L

The generalized true anomaly is computed as _"

I _b= tan -I (sin C/cos _b) (5-75) !where ,,

i : " cos_b=z_l (p-l) (5-7C) "_"

p_ F. 4rV Lcos _ -1 (5-77) '

sin¢=e-' r + ,o

I ; _ (_'r) (5-78)

r _ ._,
• ' i

p =- + (5-79)
, _ V2L- / .

e .... p (5-80) ':

and

r 2 _.""77"g"--_J

I "• _It-This last derivative, given by _Tvati, ons 15-48) and (5- .), depends only on L, G,
.', and ¢ given above.

}
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d

%- The longitude of the ascending node h is given by I

h = tan "l { Gi \ (5-82) :

I

and the argument of pericenter g by

g=u-_ (_77<g<_) (5-83) :

where :"

Ez '1(G_ + Gg) -G 3(xG I + yG 2

u -- tan -I " G(yGI_--- _ x-_2 ) • (5-84)

J
"4' i',

<-, The eccentric anomaly E is computed as

/

E = 2 tan -I I]/_--_ tan (- ,_ < E < _) (5-85) ..>i- ,,
i

and the variable _ is given by ¥

7 :J_;---t - u ...._ e_] _rsin (5-86)
(2L)3'_ P ._,

5.5.3 Trmusforn,ation from DS Elements to Cartesian Position and Velocity , "}-

Predicted values of the DS variables obtained from the numerical integration

must be transforme_t to physical Cartesian position, velocity and th_e in order ":
to evaluate the perturbing forces and for computation of obscrvations. The ,,

following equations yield the Carte._an state,

}-= 5"x, -_dx 2 (5-87) /

• o ".2..

}- : c_:l + dx2 _ c-xl + dx2 (5-88) :l-

where _ and d are the vectors

J
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,7. i

i
= Ices g sin h + sin g cos h cos (5-89)sin g sin I

J.

f_ sin g cos h-cos g sinhcos I) 2

= sin g sin h + cos g cos h cos I (5-90) ),

2

cos g sin I ,

and :_

X 1 : r cos @

x 2 -- r s i.n tb (5-91) )

The required derivatives for the velocities are given by , /5

c di (5-92a) .:.

d : -_g (5-92b) .:

_'I: _ cos _ - r_ sin _ (5-93a)

x2 = _ sin _ + r_ cos _ (5-93b) ";,

,_, The quantity_ can be expresseddirectlyinterms ofDS elements as i, ;_

_ er2 sin _ + 4rV L cos _ (5-94_ _,_i
t:(

f and _ is givenby Equation15-81).
#

The physical time is computed from

t =_ + _ -_0- r- ¢'!_"Z sin (5-95) ,_

:_' _ (2L)S"2 P ! '"'-t I
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where

E = 2 tan -1 (_ tan (5-96)

i

5.6 PIC_RD ITERATION USING CHEBYSHEV SERIES

_ " Tl_e Picard iteration method used in GTDS (derived m Reference 8) can be used
,, to integrate the Class I Cowell equations of motion

:' dr -_7- _ = _+p (5-97)
, dt r3

_.

" _ --=rd_"- (5-98)
_ i dt
_ J
•e js

• "_ using the foUowing iterative process (Reference 9) _/

; A

- " (5-99)
• rn+l(t)=7(t o) + r(t', r n, rn)dt'

0

ft ._ (5-100) :i
• _'n+l(t) = F(t 0) + rn+ 1 dt' ,

\ t o

The sLqxting values r0 (t), r0 (t) are arbitrary continuous vector ffmctions on the
interval [to, t ] which satisfy the given initial conditions

7o(to) : 7(to ) (5-101)

.r0(to) = ?(to ) (5-102)
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i8 In the present version of GTDS, r0 (t) and r0 (t) are solutions to the unperturbed
problem (__ = 0 in Equation 5-97)). Since the sequence converges to a close |
appr_nnatien of the exact soft, ion, the method can be used to generate very J
accurate solutions. Except at collision, the Cartesian coordinates and equations
of motion are regular, which means that the method can be used for elliptic,

parabolic and hyperbolic orbits. _

In order to solve Equations (5-97) and (5-98) for a given value of n (i.e., to

accomplish one iteration), the Chebysbev series is used as follows.. The position
and velocity vectors available from the (n-l_ t iteration, r-__1 and _-1, are _
evaluated at the Chebyshev points in time. (The precise location of the Chebyshev

points are given in the n_xt section.) The forces (per unit mass) are then. _

evaluated at each of these points in time (using the values of r-o 1 and _-i )" _
These _pecial values of the acceleration vector are then used to determine tha
interpolating polynomt21 in time in the form of a Chebyshev series. The coef-
ficients of the Chebyshev series are determined directly from the special :alues
in a rather simple way due to the orthogonality of the Chebyshev polynomials (as

described later in this section). The Chebyshev series representation of the
acceleration is then integrated in order to obtain the Chebyshev s_ries repre-

sentation of the velocity to within an arbitrary constant, of integration. The !.__/J_constant of integration is determined by requiring that the initial velocity ; (t0) , .
agree with the series for the velocity evaluated at t o. The result is an approxi- _

___ mation to _. Si_milarly, the series representation of the velocity is then inte-
grated in order to obtain the series representation of the position, where now the

initial position _:(t0) is used to determine the constant of integration. The result
is an approximation to _, thus completing one step of the Picard Iteration
procedure.

The preceding set of operations are repeated until two successive approximate
solutions agree to wi_in a tolerance that may be specified by the user. This

completes one step of the integration and the process is continued stepwtse _

\_. until the final time is attained.

?
A finite Chebyshev series fitted to a function has the significant property of _

making the least possible maximum error of all the common int3rpolating ,_
orthogonal poly.nomtal series. The maximum error committed, as well as the
overall truncation error, diminishes as the number of points used in the fitting
increases. Since the _rror in the fitting of the accelerations oscillates with an
amplituae less _an or e_nal to the maximum error, the errors partially cancel / _"

each other during integrattm,.

The Chebyshev _eries sok_tion is derived in the following manner. The interval

of time (to, tf) is mapped linear!y onto the interval (-1, 1) by means of the
expression ,,

5-27 _
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t -

: I

/,_t0/_ = I - 2 (5-103)
- to/

" whe_'e _,

_ ", the normalized time

: t o "_ the initial time _:

:"_ the finaltime

. tf - t o -_ the interval of time forwhich the orbit is to be integrated by
Chebyshev series

The normalized time _ = 1 corresponds to t = t o . The time points for which
the Chebyshev series is to be fitted are the zeroes of the (N + 1) "t Chebyshev
polynomial. At these points, the Cheby_hev polynomials have an orthogonality

L

_-; property with respect to summation. The Chebyshev polynomial3 Tj are defined
i

_,-i Tj(_) = cos j (cos "1 _) - 1 _<_ < 1 (5-104) ,/J" ,,i

and the N + 1 Chebyshev points are given by

_:k= cos _-_-) for k = 0, 1 ..... N (N < 48) (5-105)

' An interpolating polynomial PM(_), representing the i th component of acceleration :_
._ as a function of the normalized time £, is expressed as a finite series in _

Chebyshev polynomials

2'PM(_) = CjTj(_) (5-106) '
j=O

where M is the degree of the polynomial (M _<N) and the prime denotes that the _ '_
: first _e,rm is factored by one-half (if M = N, the last term should also be factored

by one--half). The c i _s are numerical coefficients which are determined from _
the I th accelera_on c¢_mponents _'_ {£_) at the Chebyshev points by means of _ ._ "

,: the relationship '_

X
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N

cj =._ t:i(_k) Tj(_k) (5-!07)
k=O

)
where the double prime indicates that the first and last terms (for J = 0 and .,
j = M) are factored by one-half. _

The integration with respect to time is carried out using the foll_ing formula .:

l{(j--_)Ti+l(_)- (j__)Ti_l(_) _ j >1 (5-108)

Special ca_es hold for j = 0 and j = I, i.e.,

fTo(_ ) d_ = TI(_ ) (5-109)

1
JT I (_) d_: = _-(To(_) + T 2 (_)) (5-110) :"

The coefficients for the integral of the series for PM(_) are represented t_y bj, .LJ/_
i.e., ._

f i_l(x)dx=_-_bjTi(_ ) (5-111)
I j=O

At _ = 1, this expression for the I th velocity component is set equal to the initial _

value of that component of velocity Dy adjusting the constant b0 to satisfy this t "!
", condition. A similar adJusbnent is made after the integration of velocity ,

components in order to match the series evaluated at _ = 1 with the initial
component of position. ,.,

The tnteg_catlon formula_ lead to a simple relationship between the b j's and c i t% •
given by

bi = "_I [cj_l -ci'l] I j <(M+I) (5-i12) , /_!_,
{

where cM+I = CM+2 = 0 by definition,and b0 ts obtainedas describedabove.

?

,#
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:: Once the cj's are known, the summations required to evaluate Ps(_ ) for any value
: of time can be done more efficiently by use ofa backward recurrence relationship, ]

_: Intermediate quantities d axe computed using the algorithmj -_

t J

dj(_) - 2{:dj+l(_) - dj+2(_:) + c. (5-113) _• ) ""

forj = M, M-I .... 0,startingwith dM+I(_)= dM+2 (_)= 0. The valuepM(_)is
then computed from

:_ 1 rd0(_)_ d2(_)] {5-114)

L
" 5.7 GAUSSIAN VARIATION OF PARAMETERS FORMULATIONS

' : In real space, the unperturbed satellite orbit is a conic section lying in a plane
! which has a constant orientatior_, shape, and size relative to an inertial frame.

: ; For a perturbing acceleration which is small compared with the central attrac-

" _ tion,thecharacteristic3ofthe conicsection(e.g.:s_mlmajor axis,eccentricity) /,
. vary slowly with time. To a lesser exte_.t, me attitude of the orbital plane with .J

respect to the inertial frame is a continuous function of time. However, t_

: satellitCs position along its orbit changes raptcuy with time. . !#

The numerical integration process is improved by lntrc::ucing state variables _;
which take advantage of this disparith- of effect. Tl_e introduction of such

variables allows comparison of the motion within the pla_e to a reference orbit
and treatment of the motion of the plane as a slight correction. The method of
Variation of Parameters (VOP) uses this approach.

(

in this section, three orbit generators are discussed which are based on the ,

•,,, Gaussian form of the VOP equations j

._" _a _ _a _ (5-115). ,_'

where ,__a slow element _
• e

-_thevelocityvector ' _

_ the perturbing acceleration vector !i

and _

o_ = i_' + P (5-116)

5-_0 "_
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where _ _ a fast element :_

I fi' _ the derivative of _ for unperturbed two-body motion :

These three orbit generators differ in the choice of dependent variables, i.e., i

either Keplerian, equinoctial, or rectangular elements. Some of the Keplerian
elements become undefined when the inclination is zero or near 180 °, when the i

eccertricity is zero, and at collision. The equinoctial elements (discussed in
Section 3.2.6) and rectangular elements are selected to eliminate all singularities
except for collision. All three _en_r_+or3 _ise tiiile as the independent variable
and _re _ere£ore well suited to the accurate integration of cL cular orbits. The _:
Keplerian, equinoctial, and rvctrngular VOP formulations are discussed in
Sections 5.7.1_ 5.7.2, and 5.7.3, respectively, ii

5.7.1 Keplerian Elements

The input initial conditions for an orbit in GTDS may be expressed as rectangular •

components of position and velocity at a given time t. The equations used in
GTDS for the conversion of rectangular position and velocity components to
Kep]erian elements are discussed in Section 3.3.8.3. For calculation of disturb- jr
ing Jbrces and for printout, GTDS converts instantaneous values of the Keplerian ._
elements to rectang_ar components of position and velocity. The formulation

;_ usec! for these conversions is discussed in Se_ion 3.3.8.1. Although all tin ee

classes of Keplerian orbits (elliptic, parabolic, and hyperbolic) are treated in _,
the conversions, the VOP methods of GTDS apply only to the elliptic case.

The VOP equations of motion for Keplerian elements are taken in the form of :_

the ,_aussian planetary equations _
• ,i

fi

- ! _
\, d t n 2a _

. >1 - e-_ . p (5-117b) _
de _ v_ rpXp --Xpyp + -.,,,,.,-n_dt na2e

di - yp_p - Xpyp) cos i + • P _ "__ = (5-117c) ' :
dt na _ _ s in i

t
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: I

; __dTL= 1 __b_:.p (5-117d)
• dt na 2 ¢1--'-[-_e sin i ?i

I- - ^ cot i _:_I "_ (5-117e) t -:dw_ i ¢_ (LXp + Nyp) + 5 --e--2 :dt na 2 e
?

dM 1 L- 1 - e 2= n + _ 27 (L_p + Ngp ._ (5-117f)dt e -
4 ha2

, where Xp and yp are the orbit plane coordinates given in Equation (3-145), ip
and _p are Keplerian unit vectors defined in Section 3.2.5 and given by the

• - _ inverse o i Equation (3-159), and P is the perturbing acceleration vector. The

following auxiliary quantities are also defined
: i

n = FP]_-,a_ (5-118a) ...." "

! ?:: \ 0 i :
Y

?7 ,
-- = z cos [: (5-I18c)

",\ (xp s in _ + yp cos a)) cos i }

a2 :
L = -- [e cos E- 1 - s in 2 E] (5-118d) , ':

r

/

N = a2 s ill E (cos E - e) (5-118e) ,:

t
%

,: The eccentric anomaly is obtained by solving Kepler's equation according to the )

method described in Section 3.3.8.1. i '_
2
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i 5.7.2 Equinoctial Elements

'Since disturbing forces are calculated as rectangular components, and initia!
values may be rectangular components of position and velocity, GTDS has a _,

capacity for converting Cartesian coordinates to equinoctial elements (see .}
,#

Section 3.3.9.2). The transformation from equinoctial elements to Cartesian I '
i

coordinates is discussed in Section 3.3.9.1. The Gaussian equations in equh_octial
elements are given by the following expressions (References 10 _nd 11)

da _ 2r . _ (5-119a) !

dt n2a !

d|____= [(2XIY 1 -- XIY 1) f - XlXl_ +_ (qIY 1 - PXI) w "P (5-119b)dt i
'i

i-dk 1 • h (qiy 1 _ pX._) • p (5-119c)
d-_ = _ [YI_I? - (2X1YI - X1YI) _ - G

! _2_J /

ii ,, _dt = ....na 2 \ ?,_ + na2_ (qlY1 - l='xl) , _i (5-119d) _;_ ,

_iI: dp fl + p2 +q2 1 i _:d'-_ = 26 YI "_ (_-l19e) _

_ dq _ [- i + p2 + q2) i (5-119f) ,0 ,_

',,, d-'_- L_ 2G Xl "p ' "

where i

G = na _ _1 - h 2 - k2 (5-119g) i :

The f, _, and _ unit vectors are defined in Sections 3.2.5 and 3.3.9.1, while the i

_ component_ of the uosttion, and velocity vectors in the orbit pirate X_, Y: , _ i, Y,., ! ' ,
_ and ;_ are defined in Section 3.3.9.1. i ' :

2_
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5.7.3 Rectangul_ Formulation ['

_i. initial Cartesian components of po31tlon and velocity e.ompletely define any
qorbit whether it be elhi.o_c, parabolic, hyperbolic, or any degenerate recti!'me_._r

orbit. From the initial position and velocity a completely general closed-form
solution of the two-body problem is syllable for determining coordinates and i
velocities at any other time (Reference 12). The closed form solution avoids
the singularities associated with aifferent types of two-,body motion. In the

• rectangular VOP formulation, the dependent variables ?_ and _0 are the initial
: conditions at the t;ime t o on an osculating two-body trajectory which yields the

same state _ and _ at tLne t as tha+ of the perturbed trajectory. The dependent
variable is the thne. The osculating position and velocity at time t are obtained ,_

i_ by inserting the perturbed initial conditions for the time of interest in the
(.

standard closed formulas for two-body motion.

The dependent variables, or perturbed initial conditions, are all slow v_riables,
_' i.e., their time derivatives are all zero when the perturbing accelerations are
! _et to zero. Therefore, all the equatior:s of motion are in the form g._ven in

, i Ecf_ation (5-1!5).
1

_- -- = (5-120a)
i dt d# J

_ d7 0 '3¥"o -
p (5-120b) ,_

dt dr ":

where the partial derivative matrices are as follows _,
/,

--, IllVXo/ Oy _Xo,/_z g 0 O- 0

• ' ' ' ' " _ , ' - [_ 9 ;3 ';3yo,/3x 3yo,3y 3 o 3z = 0 g + U o ,_;

(5-121a) :
_ _
_o _o

{ I :1' fs 2 -(f - 1) s2 '._ X y •
: + Yo Yo

, (_- I) s2 - gs2 X Y i '
i

,t
' z o z0 !I

' 5-34 :'
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:" • ........... d ,k, ..... ,,_ . ,J _ . .

1 ]
- F:! '

_o,,,_ ,_,o/_, _,'o/_ = o f o +u l_o, [,_,,]
_->_/_;,_/_ _'o,'_ o o _ LZo j

(5-121b)

l 'l iS I ,' 0. xo xo + (f- l'_/v' (f- 1) s t

I"t

,, z_) z 0

!i. The position and velocity are compute.d as follows

? T = fY_)+ gr; (5-122a) _ :_
i" 1

.2-" "..--_ • '--t '_ :"_

_, r=rro+gro (5-122b) {//,,:

_ where

i g = (t - to) - #s 3 (5-123b)

.! _ = I -. !ts2/r (5-123d) ,_ i,!

.: In fiw ._bove formulas, _ is the gravitational constant and _l

, _)x/_ (5-124a) ..r 0 = (x_2 + yo2 + z0 ,..

, (5-124b)

_i r = r_s o + OoS 1 +/_s 2

: /
" . (5-124e) ,
,, so = I _ _V,_,'2!+__'2_b4/4:: _'_5,/6! +...

i _'¢.3/',, a,2_s '5, o?a_7 ' (5-124d)
Sl =V_+ , o..t. , . + '7_ + ...
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s2 = ,_/'2! + o' ?.,4/4! + _' 2_p6/6! + a_ 3_8/8!�... (5-124e)

ii s3 -__3/3! + _bs/5! + _ 2_b7/7! + a_3_9/9! + ... (5-124f)

< -' where the parameter _b satisfies the following modified form of Keplerts equation J'"

_" (5-125)
--_, t -- t o + roS 1 + a o _2 + /zs3

_ °

The equation is solved for _./Jus_ug a Newton-Raphson iteration process. In this

:: equation j

, , , ,., ,., (:)-lzt_a)
• _o = XoXo + YoYo _ ZoZo

_ "' 2 "2 ",2 2/_ (5-126b) :_): _ = Xo + Yo + Zo -

!.

: ' The parmneter U is evaluated as follows

•; U = p-(_bs4 - 3s_) (5-127) ":""

) where .... '

s,. = ;4/4! + _b6/5! +a_2_bS/'8! + a'3_lO/lO! + .,. (5-128a)

'," s __5/5! + _7 /7! + _2_b9/9 ! + a_3_b_/ll! + ... (5-128b)

i The following accelerations at time to on the osculating trajectory are als(, ._sed J_

15 )
\, .._ • o_ -129a .

• x X0 = - /_X 0 / r }

•,% w,z _3
- Yo = -/ZYo/ro (5-129b) _ ,

"'• _ ,/ ' -_ (5-129c) lz = /_z_ _r^

Initial conditions are specified by the value_ Xo, Yo, Zo, Xo, Yo, _-0 of the co- _

ordinates at a given referen,.'e time to. At time to ,

l,

_ -
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-x x 0

Yo [ Yo
I ,_

• [ Zo _ 'ZO i
!

I :
Xo I Xo

i

5.8 NUMERICAL AVERAGING FORMULATIONS

The efficiency of numerical in*.egration methods can be increased by eliminating

short period effects (i.e., those with a period less than or equal to the satellite's

period) from the equations of motion• The Method of Averages uses tLis approach,

wherein the equations of motion for an average element set are integcated. The
sd ,resulting orbit generation method is extremely efficient, but is limited to average . _'

element accuracy rather than the osculating element accuracy achieved in high
¢.
_ precision methods.

4

_:!,: The averaging methods are particularly u_eful fo- nrbit detern:ination probl.ms

l for which the cost of precision orbit calculations is prohibitively expensive, or

i,_ where high accuracy is not essential. Mission design, for example, is based on '
:, the consideration of both the scientific objectives of the mission and the engineer-
_ tag constraints. Optimum mission aesig usually requires a lar':e number of

_'-_ orbit caiculations to determine t characteristics of the proposed orbits. An
averaging orbit prediction process is well suite_ to the prelimiPary stages of ',

_ mission plannb:g where long-term trends, not local fluctuations are of primary . '.

_ interest. The a_,eraging methods may also be useful for differential correction

; problems involving large qua',tities of data. The only assumption required for
i. application of the averaging method is that the orbital elements remain reason-
k_
_ ably constant throughout one period.
L"

__ The averaging process can be handled either analytically or t.,umeric, ly (Reference

.=_ 13). The analytic method averages the effect of each perturLation (drag, oblate-
_,,

hess, third-body effects, etc.) separately. The resutting closed-term expressions

for the averaged rates can be _,,od to constr,-., a very efficient orbit generator.

_:,' The numerical averaging _echniquc cr,mL'.'_.,_manv uf the advantages o._ analytic ;

_; averaging with the ablilty _.o simulate t,_,e effect of an), small perturbations which
can be deterministically modeled. These effects are included by averaging out

:_ 5-37
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' .[.
: the short-period oscillations m the perturbations by me_n:, of a mechanical

quadrature technique. By using the Gaussian form of the Variation of Param-

eters equations in conjunction with the GTDS force model, the long-term effect

_ any combination of perturbations can be computed. Consequently, the nu-
merical technique is more flexible than the analytic method.

!

5.8.1 The Averaged Fquations of Motion

The averaging methods in GTDS use either the equinoctial or the Keplerian

formulation (Section 5.7) of the Variation of Parameters equations of motion.

The precision Variation of Parameters equations can be written in the form

x : c f("x, y)

(5-131)

# = h(-x)+ _g(_, y)
J

z /

where _ _ the vector of slow osculatingorbitalelements

¢.
j ,

_- y _ the fa_t osculating orbital element (e.g., mean or eccentric anomaly) /

E _ a small parameter which is proportional to the perturbing

acceleration ] !
i

and f. g, and h are sufficiently smooth functions which are periodic in y with

period 2_,. The averaged solution to these equations is defined by (Reference 14)

f= 277 _(t') dYA(t') _

(5-132) _'

1 _yA (t) +_r

YA(t) = -9-'_-_jyA(t)__ri Y(t#) dYA(t')

DifferentiatingEquations (5-132) and suustitutingthe results into Equations

_5-.131)yieldsthe averaged equations of motion

5-38
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i

-- ' _ f t, .kt'), y(t')] dYA(t' ) '. •
: XA(t ) : _ */YA ( t ) - rr

_- (5-133) ;

l _ yA(t) + "r " '

•f 5)6(t) = _ ihN' '_] + _g['ff(t'), y(t')]t dYA(t') -: _
_;_ A(t)-?T

_. Whenx.,,(t') and YA(t') are used in the evaluation of the arguments of the f, g, and " :
_- h functions,thestandardfirstorder averaged equationsof motion are obtained : "

" _, (Refero.-.ce 15). In GTDS, the integrals in Equation (5-133) are evaluated nu- .
: mericaily using a Gaussian quadrature method. _- -_

?

5.8.2 Numerical EvaluationoftheAveraged Equationsof Motion

Four different approxim_,tions are currentl) available for evaluation of the

arguments of the f, g, and h functions in Equations (5-133): :"
J

fP

1 Traditional mean element behavior "/

" " _(t') = XA(t) (5-134) ;

_(t') = yh(t')
,?

2. Traditional mean element behavior plus mean long-period effects

: x(t') =gA(t) +#A(t) It' - t] ':
(5-135)

Y(t°) = YA(t') i

where "_A is the averaged rate computed in the previous evaluation , .ii.

3. Traditional mean element beha_-ior plus short-period effects arising from J2 :

_(t') : gA(t) + (5-136) : :

y(t') = yA(t') + AYJ2

The short-period corrections are obtained using Bro,,wer theory. ,,

$' " 5-39
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i 4 Traditional mean element, mean long-period and short-period effects = " ]• !

x A ' A_j2_(t') = _A(t) + (t) It - t] +
: (5-137) i

"- y(t') = YA(t') + Ayj2 il I

. Currently, only Equation (5-134) is available for evaluation of tile argument
: in Equations(5-137).

5.8.3 Averaged EquinoctialVamation ofParameters Formulation i,

; The averaged equinoctial formulation (Section 5.7.2) uses a slow element

• vector x = (a, h, k, p, q) and a fast variable equal to the mean longitude ,\. To 1
unilormize the mtegrand in Equation (5-133) and to reduce computational time,
the integration variable is transformed from mean to eccentric ]gngitude F,

; using the relationship

: !i

'i dF A
1 (5-138) /---= [I- ,_ cos FA - hA sin FA]-I ! _'

dk^ ^ : -_"

: 5.8.4 Averaged Kepierian Variation of Parameters Formulation

The averaged Keplerian formulation uses a slow element vector:_ = (a, e, i, _q, _)
and a fast variable equal to the mean anomaly M. All four methods outlined in
Section5.8.2are availablefor evaluationoftheequationsof motion. When
methods 3 and 4 are used,theintegrationvariableistransformedtothetrue

anomaly f, using the rel_ionsbip
' i

\ dfA a2 v/i-'-Z'_A (5-139)

d
!
, where rA is the magnitude of the position vector computed using the averaged
• elements.

5.8.5 Transformation from Osculating Orbital Elements to Averaged Elements
t

The accuracy of predictions obtained using the averaged orbit generator are
improved if initial average elements are used instead of osculating elements.
In GTDS, this traneformation is accomplished by solving the integral equation

for the average semimajor axis

5-40 REPRODUCIBILITYOF THE
0RIO_AL PAGE I_POOR
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(

ti

It +TA/2aA(t ) = ._ a(t') dt' (5-140) _i
"t "TA/ 2 J

_- using the following Newton-Raphson xterative procedure } ,
)

_ 1 _ t+(TA/2)n "' F = [aA(t)]" (T^)n a(t') dt' (5-141a) ;
st-(TA/2)n !i

_" - dFn (5-141b) i
D d [aA(t)] n _:

g

• [aA(t)]_ [aA(t)]" - _ (5-141C)

where •

; : ) [aA(t)] o = a _ the osculating semimajor axis

and where TA, the average period, is

TA = 27z_,_ (5-142)

,i
The average equinoctial element set is then computed by averaging the osculating

'-. elements over the average period, i.e., ,

1 f t+TA/2
= _(t' ) dt' (5-14"_d)

xA(t) _ "t-TA,2
f

i YA(t) = 1 ji t +TA/2 '• _ y(t' ) dt' (5-143b) '
!':. -T A '2 o
f

,f
J

• The average equinoctial elements are transformcO to average positior, and velocity ;

' vectors, Keplerian elements, and spherical coordinates, i

F -4!
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5.9 BROUWER THEORY " ]

: GTDS includes two analytical solutions of satellite motion for a simplified dis- ,.
turbing potential field limited to zonal harmonic cocffmients for J2 through Js "
(see Section 4.3). Brouwerts first order solu_zon of this problem is obtained ..

: by applying the Von Zeipel method in oelaunay canonical variables (Reference i ).
The resultingsolutioncontp.lnssingularitiesforsmall inclinationsand eccentrici-

"." tiesand ata criticalinclinationof63°26'.

_ Tt was shown in Reference 15 that the first order Brouwer solutioz: for secular and

long period effects is identical to that obtained using first order numerical averag-
.: ing (Section 5.8) with the same perturbing force m,_del. Thus, Brouwer theory

is equivalent to the first order averaging solu0on plus short period effects for the -,

32 through Js perturbing acceleration. For applications which require more
c-omplete perturbation models, averaging methods are more accurate than
Brouwer theory.

Brouwer theory provides a rap':.l means of determining a satellite ephemeris, i :
Its precision is related to the error committeu iv omitting all perturbations

except the low order zonal harmonics. The orbit from the Brouwer theory can /_'('
als,)be used as an intermediateorbitinthesemianalytictechniquesdiscussed "_
in Section5.11.

_

For applicationswhich requirehighefficiency,iLisimportanttoconsiderthe
number of output points which are requireo. For Brouwer theo, v, the compu- :"
rational cost is directly proportional to the number of output poll _. However,

when averaged numerical integration is used, the cost is mainly dependent on
: the arc length instead of the number of intermediate output points. For differen=

tial correction applications, the eomputaAonal cost of the averaged orbit genera-

tion methods is often competitive with that of Brouwer theory and offers con- _ _:
, siderably greater flexibility with respect to the perturbation model. ,
\

ff

Computationally, the Brouwer solution is divided into secular, long period, and
shortperiodterms. The solutionconsistsofa secularmotion,upon which is ,"

• superimposed a number of long period terms. Superimposed on the sum of the
secular and long period terms are a number of more rapid oscillations or short

period terms. The periodic terms of both long and short period are developed

" to order (J2), while secular terms are developed to order (J2)2. The harmonic
coefficients J3, J4, and Js are considered to be of order (Ja)2 in the derivations. / _t

,J

5=42
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Tbe Delaunay elements are related to the classical elements in the fcllcwing
way

L = (_a) 1'2 _ = the mean anomaly = M

G = L (1 - e 2)'/2 g = the argumeet of pericenter = _ . ,

H = G cos i h = the longitude of the ascending node = _ '

However, the solution is written here in terms of classical elements (a, e, i, _,
g, h) = (a, e, i, M,_, l_). In the formulas that follow, double primed variables _'

refer to secular or mean motion, single primed variables refer to secular plus
long period terms, and unprimed variables refer to secular plus long and short
period terms. The re)primed variables are osculating elements.

Only the elements _, g, and h undergo secular motions. Mean elemeuts at epoch _
are denoted by a subscript "0" a:]d the time elapsed from epoch by At. Mean
elements are usually obtained from osculating elements by the procedure outlined !

z

in Section 5.9.1. The first order solutions to the mean element equations of i

motion are _ :
8

a II hae#

= ao + (5-144a)

e" = " (5-144b)• " " e o + 5ei

ill • II

: _. = lo + /_i (5-144c) ;

_" _" = n0At + )_At + "0 + A_ + A_D_G (0 <_.";}"< 277) (5-144d)

g" _At + " + /_g (0 < g" " 2._) (5-144e) i ': ; "-: I_0 - -

'. 2 = hat + h0 + Ah (0 < h" < 2v) (5-144f) ! ;

where 5a, Ae, Ai,A_, 5 g, and Ah are user-providedperturbationsnotaccounted _ ,'
$,

_ for in the Brouwer-Lyddane model, and

'_: _'_'DP.AG : ,L--I'_ E Np,q(| - tq) p (5-145) i ,'k

i, where Np,q are the Brouwer drag coeff'.cients, and tq iS the reference time of

,_i theqth N_,q. This model isbased on thepremise thatdrag isa minor component _ ;
• of the total perturbation force.

il
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The restricted perturbation model and fir,qt order approximation, which are usec, _ ,
in the derivation of these equatious, may lead to errors which increase with time. _- /%

The element rates of change are given by

"_=non_),_ [3(382-1)+3_7_(2S_2 + 167- 15+ (30-96_-90_2)_ 2

+ (105 + 144,) + 25-? 2) 84 + i'6 74e"2(3 - 3082 �35_;_)(5-146)

/_=no _'_ (SO2 1)+ )

, (90- 192_, - 126_. 2) ,92 + (385 + 360,-3 * 45r_2) _4

, S ' [21 972 + (126772 270) 82 + (385 18972) 84]} (5-147)! +[_7_ - _ _

b no 3,_((9_ 2 + 127 5) 0 (35 + 36-,_ + 572 ) ;:3) 3 .

75'"_( 5 3_2). (3 752)) (5-148) '+_>4 - -

The following sub_,titutions have been made in order to abbreviate the preceding
expressions.

_" n o - _ = v'_ t/ - cos i"

k_ J2R2 k_- e = ---- ., V2

2 ?2 a": )2 =--_4

k3 73

_, a" 3 _6

3J4R2 k4 )'4
k4 74 ?4

,, 8 8.4 _8

5-44
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The secularterms depend onlyon theeven zonalharmonic co,efficientsJ_ and J4-

The mean valueoftheeccentricanomaly E" isobtainediterativelyfrom Kepler's i
equation

E" - e" s in E" = _" (5-149)

The mean true anomaly f" and mean radial distance r" are

L--cosI'V_-e"2sinE""I_ - e" (5-150) ]

f._-_ tan'l

r" = a'(1 - e" cos E') (5-151) !

, ,,I _2

5.9.1 Transformation from Osculating, Orbital Elements to Brouwer

:_ Mean Elements i !'

The itcrativealgorithmused forconversionofosculatingKeplerianelements to

Brouwer _nean elements is described here (see References 16 and 17). This
algorithm is useful in two situations. Since Brouwer or Brouwer-Lyddar, e }
theories require E,rouwer mean elements as an initial state, the first application __ :

consists of converting osculating elements to mean elements for use with the !
Brouwer ard Brouwer-Lyddane orbitgenerators. Secondly,osculatingelements _ _
may be cor.vertedto Brouwer mean elements forreportingpurposeP. Such |

\\ mean elementsare alsousefulas initmldata fortheintegrationoforbitsby _

the Method of Averaging and for other purposes. _

Singular points for zero eccentricity, zero inclinatio:_, and at inclinatmn 63026 '
do not permit calculation of mean elements there. Oni:, Keplerian elliptic motiol,
can be treated, which requires 0 < e < 1.

l --
Theiterativeprocess isexecutedaccordingtotheequation

s

x"(s+t)= x'(S) _ V!s_
i * + (Yl -, ) (5-152)

i=1,2 ..... 6

5-45 i "
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< where x'.'(s) _ the i th mean classical Keplerian element obtained from the
. s th iteration .

Yi _ the initial osculating Keplerian element

= y_') _ the osculating Keplerian element estimated from the S th iteration

_ Double primes denote mean elements at the time of conversion. This algorithm :
• ignores correlations between the elements of the order of 10-3 which are of no ,
: . practical importance in the calculations.

A convergence criteria limits the number of iterations. The sum of the squares
: of the differences between estimated and initially given osculating elements are

compared with a prescribed tolerance; when the sum is less than the tolerance,
,: the calculation is terminated.

The following method for obtaining mean elements at a given time is more exact

than those methods which propagate mean elements from some previous time
: using Equations (5--144) and (5-145), since the propagated mean elements deteri-

• orate with time due to perturbations not included in the solution. The values of

_x. the mean elements on the S th iteration are used to compute estimate_ of the /_osculating elements. As shown by Equation (5-152), the difference bet',veen the ,_
s th estimated value and the initial known value of tke ._sculating elements is used
to correct the S th estimate of the mean elements. 'rh_ starting approxin:ation _
for the mean elements is the set of initially known o_culating elements.

5.9.2 Transformation from Brouwer Mean Elements to Osculatin_ Keplerian
:. Elements i

; The oscul_tingelements includethesecular,longperiod,and shortperiod terms

-i _he osculatingelements are expressed by !

= ___ _- a"3 (5-153)- + 3(1 - _2) _ cos(2g' , 2f'
\r'3 r,3 _

c = e" + ,le + 2e" Y2 -1 + 3d 2) - _,"\r '3 /
t

- -rl"4 cos(2g' + 2f')] (5-154)
\r'3 J

),2( I :.2) :3n. . e" 1,, - - ,, cos(2_' _ f') + cos(2g' + 3f')]
./

5-46
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' + (3 - 5U2) [3 sin(2g' + 2f') + 3e" sin(2g' + f') ' <

+ e" sin(2g' + 3f')]) , :

i

1 '"i6(f' _' e" f'h=h" +clh-_y 2, - _ + sin )- 3sin(2g' + 2f') /:
i- 4

_: (5-158) _
- 3e" sin(2g ° + f')- e sit_(2g' + 3f')] ' :

}:

5-47
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where the Ion K period effects (denoted by b1) affect, the element_ e, i, _, g, and J
h, but not the seDima_or axis a, and are given by the following equations

_le = T_e"q2[1 - _I_ 2 _ 40d4(1 - 502) -1]

, e"_?2 [1 - 3d 2 - 8d)4(1 - Sd2) -1] cos 2g"
12 y2

/a 5 Ts r72 i"+ __ _2 sin i" + w -'7 sin (4 + 3e":) (5-159)
:- y_ 64 3,2

f;, x [1 - 902 - 24c)4(1 - 5d2)-J]) sin g"

" I

_ ' 3 g" i'; _ 35 )/5, e,,2._ 2 sin i" [1 - 5(_2 - 16_)4(1 - 5"72) -1] sin /
' _ 384 Y2 ->"

¢,

e"ble \ I
8_ i = - (5-160)

_72tan i"

bl _ = ?'2r73[1 - 1162 _ 40r74(1 - 5_2) -1]
. 1

, }, ".. 5 Y4 r?a_1 362 8_4(1 5,_)-1_ sin 2g" ;' ':
12 '_2 ','

I • f

i 1 Y3 -,13sin i" 5 zs _3 9e.2 (5-161) '_,
- sin i"(4 + )

' " 54 _ ' e"+ 4 _2 e /_,

x [1- 98 a- 24e._1(1-SOa)'_]} cos g"
J

t

35 Ys i"!l - 1504(1 5U2)"1] cos+ r?3e" s i n 5i/_ - - 3g"
384 .'

?2

5-48
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i_" ........ " I - I I I" _ _li l I III mlllll I '_

: I
t

2

_I h ={_ 1 3/;e.26_ [| j + 80_2(I _ 5(_2)-i + 20054(1 _ 5_2)-2]
i

:,: +_'__-'_/5'4 e":d [3 + la_)2(l. - 502) -I + 406_4(I - 5(92) "2 s in 2g"
(

') + 73 e'_ 5 TS e"_ (4 +_,-_e":_
, _ i 64 ! i It

L4 72 sin i" 3/2 sin

3'

× [1 - 982 - 240"_tl - 5J2) "1]

: 15 3/5 e"6 sin i"(4 . ._e "2) [3 + 1682(1 5_2) "1 (5-163)-'7 -
':; + _ 3/2

: 2' 1), , i + 4004(1 - 5¢_2)°2 COS g" !

I ,,,t

"_ {, 35 3/s e"aO -.,/ "__'- + ' 1152 7,2 sin i" [1- 5_ 2- 16_;4(1- 5_2) "1]

i 35 3's e"3_ sin i" IS + 3202(1 5_':) -I
I

.: 576 3/2

,: _ ; t
,_' + 80U4(1 - 582) -2 COS 3g" _ ' ".i

"i

In these formulas, f' and r' are computed fro rt

E' - e" s in g' = _' (5-!64) ';

and '.,"

tan_ f' = _ tan 1E' ;:'\1 -
(5-_65)

a" I + e" cos f'

r' 1 - e "2

5-50
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> f ,

or _ :
£_ r I

_in f' = (1 - e"2) '''2 sin E'• a" ":! i
£(: 5

r i f # tt"cos = cos E' - (5-166) ,;
a" ': i

r t

=1- e" cosE' '
a II

""

For the calculation of the coordinates at *.ny time, the complete values of e and ,_
should be used for the solution nf Kepler's equaticn _

E- e sine = _ (5-167) '

The conversion of osculating Keplerian elements to rectangular cemponents of
position and velocity is discussed in Section 3.3.8.

5.10 BROUWER--LYDDANE 2'HEORY

Lyddane modified Brouwer's formulation to obtain algorithms applicable for zero _,
eccentricity ard zero inclination (Reference 18). He reformulated the orbital

equations in terms o" Pozncar_ variables rather than the Delaunay variables ,_
used by Brouwer. The solution, carried out by the Von Zcipel method, accounts
for up to fifth order zonal harmonica of thp, gravitational potential. The results

are written here in classical elements rather than Pozncare element_:. _ ;J

• The Brouwer formulas are suitable tot the, computation of the ciassical elements

with one exception. In computing short period terms Lyddane uses _'' and g" _ ;

,_: instead of _' a,d g'. Brouwer remarked that eithe," is satisfactory, lint in the :

i Lyddane theory, _' and g' may be ill defined. In r,ddition, the relationships ,

(1 'e") [(a"/r') 3- ?;-3] = _)-6 ,,,. r, + e" (1 + _)'_ (5.-168a)

_' -_3cos f" + 3o" cos 2 f" + e "2 cos 3 f"] .: .-"

and

_i _ [,,,, f,, _ ,, f,, ,,,,2 f"] (5-16Sb) : ;.

(1 e") [(a".'r") 3 r?'4; = b-6 + 3 cos , _,e cos 2 + cos 3

_2_ are used Ln Lhe computation of _e to avoid roundoff probiems, where ,. is (le- <

fined following Ecuation (5-1t8). ,_ -

5-5
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5.10.1 Transformation from Osculating Orbital Elements to Brouwer Mean 1 ,,
Elements

The mean motions due to secular terms are calculated by Equations (5-1,14)

through (5-148)of Section 5.9. ,;

I

5.10.2 Transformation from Brouwer Mean Elements to Osculating Keplerian
Elements

The osculatingelements are computed using Equations (5-169_through (5-185) :
(Reference 19). Since the periodic ternm are somewhat lengthy,_ number oi

substitutions have been made m these equations. :

Semimajor Axis

{r e< oJ a" (3d 2 1) "_ + + cos cos/ a= I+> 2 - -- +
L _6 _

Y

"_ (5-169)

Eccentmcity

e = (e" + _e) 2 + (e"_,_) 2 (5-170)

where

(_C = _I_--_{_';(I - ,:2)[3 cos(2_# L f#) + cos(3f- _ 2_')] _,

, :

1 c"2) (2g" f") f" f" , :,- 3)_ __(l - cos + 2 (3e" cos 2 + 3cos

(5-171)

1 (3c: 2 - 1) :"
+e "2 cos 3 f" + e") -'X2 7?6

,, e" 3e" f" f" e" 2 ' "
x ,_ + _+ cos 2 + 3 cos + cos a f :

--
{ 01_I(_hI"r _ --
i
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--- +-- + sin(3f" + 2g"
\r"] r"

BlS sin 3g (5-173) _ !and _le = B13 cos 2g" + B14 sin g" - "

Inclination

(Is (_') ]2[ 1 (_--_*) _]J (5-174)
i ; 2 s in -1 in _h + b i cos + s in/i"'_']2

_ where

i _ . i t
: 1 :_ ' i"_e" i .:

"_-" _i = _c., 2 sin , cos(3f" + 2g")

t
L

+ 3[e" cos(2g" + f") + cos(2 f" + 2g")]} (5-175) _

, L

A2°(I _ cos2g" +B8 sing" B9 sin3g" ) _ .:_
"k "r?2 '

and g.

s i n _h - I 2g" g" 3g" '

li ' 10 ':in + BII cos 4 BI2 cos - ,_

2 cos(i"/2)"
, £

1 ,, " s _n - + ) (5-17_) 0 ,
_' 2:26i sin i [6(e" f,, /,, f,, t

- 3(sin(2g" + 2f") + e" sin(2g" + f"))

_. - e" s in(af" + 2g")] : '

t

, /
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1 .... ,_ s ................. m................ m _-.,.

Mean Anomaly_, Argument of Perigee g. and Right Ascension of Ascendin_ _ }
Node h -

t _

; _= tan-I L(e,, s4_7-_e._&sin_. J if e;_O (5-177) -

4;= 0 if e= 0 (5-178)

in i 5hccs +sin _.i cos + s.n_]j if i _'0 (5-179) ih=t an-l<..... i

L ( 11 ./os h" _i cos + sin sin/i"
v'/a \_] 5hsinh ;

h 0 if i = 0 (5-180)

_._'

I_ = (._ + g + h) - _ - h (5_181)

/.
' where -

+ g + h = (4' �g'+ h') + £1 \_ + 1/e,,w_ (1 - _2) in(af" + 2g")

/'+ 2 sin f"(3_') 2 - 1) + +

1

3 , f,, f,, £,, ',
+ _ _,.2[(5'P - 2_; - 1) (e" sin + - )J + (3 + ... - 502 )

I '[e" (2f" 2g", 2f" . g" f"))]x 72 .sin + _ + 3(sin(2g" . ) c'" sin(2 +

i mlil
5-54 " '
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; i

"'
As =/-2-se"2(1,,- 5d2- 16FaA;) A22: A2otan kT] - ]

'_ )'2

A9 _2 sin i" = ,= A23 _.2AI 7

1

AlO = 2 + e "2 A2 i = A11 + 2 (5-184)
cont'd

' All = .ae "2 + 2 A2s = 16Als + 40A16 + 3

1 A
> AI2 = Alld? 2 A:6 =_" 21(11 + 200A16 +80AIs)

and

i Bl =,_(A I -A2)- (A1o - 400A_4 - 40A13 - IIA12) + _A21(II + 200A16

J
' f

J [- ol ", 5 _4 ./
< + 80AIs ,'2 + _'_ 80A14 - 8A1a - 3A12 + 2A2sA21+ AI -7,

/2

B2 = A6Al_(2 + _- e"2) + AsA18_2 - 3-2A4A17 ' + A2° tan

x As+A +_-_ A4A17: +26] + _-_2A3A20A2ssin i"(l-i_) (5-185)

x

3 5 /5
- e" i"(:' - 180Ats + 5 + 32Als _B3 576 -, sin 1) A_1 .

"2

1152 e" I tan + [2e "2 + 3(1 7ja)] sin i'

a

D4 rtc" != (Al - A 2) _

.i

5-56 " "
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B6 = 3"--8-435773A8s in i"

, 5 )'4 (I- 7_ 2 '

B7 = 772A17A1 "y_(1- 1582) 12 _2"

B8 = _64 A3_32(1- 9_2 - 24_:r4A'l)+ _2A_'

. _. B9 _ 35384 r72As -i

j

_':. , (5-185) _, ...1 _" ',

Blo = s in i" _Y4 _ , eonttd ,

- • ) I

BII:A2_ A_+A6+_A3A 2s

Bt2 = _ 80A;6 + 32/_1s + 5) 35 Ys., e" sin 2 i" A2 + 115"-"-2 _i
72

B13 = e"(A 1 -A 2)

5 i"
B14 = _A5_2 sin + A7

:35 .... :
=-_ Asr1" sin tBls 384 i '

., I_

" _ 5-57 '_:,
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: The mean value of the eccentric anomaly E" is obtained tteratively from Kepler's
equation ]

; E" - e" s in E" :: _" (5-186)

g

The mean true anomaly i", the mean radial distance r", and the ratio of the ,
:. mean semimajor axis and the mean radial distance are given by

F 7.it f, I"I- e"2 si._nE". (5-187)

: = tan-1 L cos E"- e" J ,

_ r" = a"(l - e" cos E") (5-188)

:' _ a" 1 (5-189)if __--
: " r" (1 -. e" cos E") _"

i- _ 7t
,'. 5.11 INTERMEDIATE ORBIT

The Intermediate Orbit methods used in GTDS (Reference 20) are semianalytic

methods which combine analytic theory and numerical ihtegration. The solution
to a simpler uroblem obtained by means of an anal_¢ic theory is used as a ref- !
erence solution, and the difference in the time rate of change between the true
solution and this reference solution is integrated to obtain the true soiution.

Either a Variation of Parameters or an Encke approach can be used in the '
development of these metilods. Using Intermediate Orbit me.hods causes the

quantities on ,*he right hand side of the resulting differential equations to vary :,

slowly and smoothly with time, m_king them more amenable to numerical inte- _
'-. grationmethods (i.e.,more numericallystable)thanthe originaldifferential ",

equations.

Intermediate Orbit methods can be developed for any analytical theory; however,

only two intermediate orbits have been considered for implementation in GTDS.
The first is an orbit in which short period effects due to J2 have been eliminated

using the Brouwer theory. The second is the orbit resulting from J2 perturba-
tions using the complete Brouwer theory for secular, long period, and short
period perturbations. The equations of motion are better conditioned for ntunerical
integration when they are smoothed by removal of fast varying short period J2 ::
effects or when made slower und smoother varying by using the complete
Brouwer theory to remove secular, long period, and short period perturbations

5-58
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" A ,- J . I! _,

iJ_ arising from J2 • Orbits of small eccentricity ana low inclination can be con- _
sidered by an option, which uses the same intermediary orbita as above, but
which are expressed in Poincar_ rather than Delaunay variables.

Efficient numerical integration is achieved through minimizing local error by an
appropriate choice of a uniformizatlon constant n. This involves selection of a
new independent variable s, related te the thne t by

,m

ds = v_ dt
r n

_e

where r is the magnitude of the satellite's position vector, _ is the gravitatio,'al 1

r _

constant, and n is known as the uniformization constant. To a cor, siderable extent, _ _
the optimum choice of n depends on the dominant perturbation _Zfecting the orbit _
under consideration. Thus, for the Intermediate Orbit method based on short
period J2 perturbations, the main portion of J2 must be modeled, leading to a i_

,_

choice of n = 2; however, the Intermediate Orbit method using the full Brouwer

theory may still require a selection of n = 2 (or higher for an elliptic orbit) if _ /,,
the orbit is significantly perturbed by drag. If the intermediary orbit is out of
the high drag region, then the choice of n depends upon the ellipticity of the orbit

_: :r and whether or not third body perturbation,,_ are significant. :_

[ GTDS's full Brouwer intermediary is an osculating Keplerian orbit which changes

,:_' due to J2 , the coefficient of the second zonal harmonic. Perturbations due to ,l2 f.
!: dominate those caused by other gravitational harmonics, third bodies, drag, etc.,
_ for many close earth satellites. While other secular perturbations eventually

_ cause the intermediary and true orbit to become widely separated, the GTDS !

_ intermediary stays near the true orbit much longer than the two-body solution. J

5.12 VINTI THEORY _ _

Vinti theory is a General Perturbation Method. In an approach similar to that of
Brouwer, the dependent variable set is chosen such that the Hamilton-Jacobi ! '_;

equations of motion are separable. Of the eleven coordinate systems which l_

have this property, oblate spheroidal coordinates _, _,, 5 are chosen since they :_ _
are most appropriate for describing motion about an oblate earth. These _ : _

coordinates are related to the rectangular position coordinates as follows _

x + iy = (£2 + c 2) (1 -T;2) _'2 e,¢ (5-190)

z = £_1 (5-191) _;! _
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:, where ,/

;3)=ReJ 2 1-]J2J

I

and where _ is the mean equatorial radius of the earth and J2 and J3 are co-

} efficients of the zonal harmonics (see Section 4.3.i). On the other hand, Brouwer
theory was developed in terms of elliptic coordinates, which ._ce most ,_pproprial;e
for describing motion about a point mass body.

"., Vinti obtains an analytic solution for perturbed satellite motion arising from a '

: potential of the form
Y

_, V = - /.z(p 2 + C27"}2) -1 (p + ,_b) (5-193)

where

'._ 1 j_ (5-194) "

The above potential leads to a fit of the gravitational potential

v --- K - (5-19,_)
- r /.._j L\ r / Jn sin:
:_ n=2 ;

exactly for the second zonal harmonic and about two-thirds of the fourth zonal

',% ¢,
; . The resulting solution gives the periodic terms correctly to order J _ and the
: secular terms for the intermediate orbit to arbitrarily high order. The math-
' ematical details are given in Reference 21. This method/or treating the effects

of J3 eliminates singularities for small eccentricities and for small or 18( degree
: inclinations which usually occur in perturbation theories. Thus, Vinti theory .,

is particularly appropriate for computation of polar and circular equatorial ;_
orbits. '

I
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CHAPTEF_ 6 "

'¢ NUMERICAL INTEGRATION OF THE EQUATIONS OFi

MOTION AND VARIATIONAL EQUATIONS

This chapter describes the St_rmer-Cowell/Adams inte3"ration processes i :__

; available in GTDS for the integration of the Cowell and various VOP (Chapter 5) _ ,_

formulations of the equations of motion. These processes were selected on the _
" basis of several efficiency studies (References 1, 2) comparing various classes _ L

of popular integration alborithms as applied to special perturbation techniques.
This chapter also describes a single step integration method, the Runge-Kutta _
method, which is used in GTDS in connection with sequential estimation a_d as _

, a starter for certain multi-step processes, i

.,_ Multi-step methods of the type described below were found to minimiz_ the I !
_ number of derivative evaluations required to produce a given accuracy at the 4

end of the requested interval of integration. Since, in general, the major cost
in computing an orbit is the evaluation of the .....

,.omplexforcefunction(Chapter4), ,_,_
this implies multi-step algorithms are most efficient. ._

! " Within the class of multiste_ methods one must still select optiors such as:

(1) Type of formulation - i.e., methods may be used which solve second

order systems directly (Class II), such as StSrmer*s method, or which normalize ! •
_: the second order system into a higher dimensional first order system ard use a

_:_ Class I formula such as Adams-Bashtorth: _

(2) Type of algorithm - several algorithms may be selected within the ,
_, _uitistep predictor-corrector schemes ranging from PE (prediction only) to

_" P(EC)", PE(CE) _ and PECE*, where P = predict, E = evaluate derivative, t '
" ! C ---correct, and E* = pseudo-evaluate, i.e., correct or re-correct only part of _ _

the t,_t:tl derivative; _ _.'i;

(3) Order of process - various order formulas may be selected to use in _

the algorithm, recognizing the fact that higher order formulas are more _ _
_' accurate but less stable; i

i o ;'-(4) Stepsize control - since the orbit dynamics may undergo large variations
duriug a revolution, e.g., high eccentricity orbits, an algorithm must be selected _

to aliow stepsize variations. This can be done either by numerical monitoring i _
" , of local errors or by analytic transformations of the independent variable _Time- _i

regularisation), i '

; 1+ 6-1
i
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_'- Most oftheabove mentioned degrees offreedom are availableinthe GTDS Is
., system and have been studiedforvariousproblems _References3, 4). Some

general conclusions reached are:

r (1) For formulationsinw.wing second-orderequations,Class IIintegrators
_ shouldbe used to solvethesystem directly,utilizinga Class I method toobtain i
_ first oerivatives if required;

•_ (2) The highest possible order formula, s_.bject only to the constraints of

numericals,;ability,shouldbe used; _,

; 13) Pseudo-ev_,_ate algorithms significantly increase the stability regions _
ofpredictor-correctorschemes at littleor no costinefficiency; '

_ (4) Efficiency dictates the use of stepsize control for moderate and high
eccentricity orbits; analytic steps_ze control is more efficient and reliable tb._u _.

"_i numerical stepsize control; _

_ (5) The choiceofthe "_.est"integratorand Independentvariableishighly _'
_ dependenton thechoiceofformulationofthe equa*ionbof motion. Formvlatim, _ .. ,_

characteristics such as regularity, or "smoothness" of depend_nt variables, • /

_ and dynamic stability influence parameters such as numerical stability r_,gions, \ ,
_ choice of order, etc. As new formulations are introduced, ca_'eful "match_g"

of approprivte numerical schemes is required.

In the following _ections the multi-step methods based on Newtonts interpolating _.
polynomial are derived and the basic algorithms for iteration, starting, int_ r-

polation and stepsize control are discussed.

\ 6.1 ADAMS-COWELL ORDINATE SECOND SUM FORi_'TLAS -

The formulas fortheintegrationand interp_,la_ionofth¢ equatiensof motion a_,d _'

the variational equations are basically of tb. Newtonian type derivable from '

standard difference operator techniques. For the integration, these formulas
definethcwell-knownpredictor-correctorAdams method ,_orfirst-orderequa-

' tions and CoweU method for second-order systems. Formulas of the same
classmay be used to perform the requiredinterpcationsto determine values . ._

! _ not_ven intheintegrationprocesv and to form thestartingsetofsolutionvalues "

requiredby thepredictor-correcto_process.

Inthe_ollowiz_discussion,an outlineof thederivationsof _herequired_o_-mulas

isgiven. In addition,a detaileddescriptionof*.hecomputationalalgorithms
i necessarytoperform theintegrationsis presented.

6-2
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Let s and h denctc realnumbers, and consider the linear operators V, E s, D,
and I. which arc defined as

..,-

."_ fBockward"1
V f (t) = f (t) - f (t - h) _Difference? (6-1) '

• , LOperator J

.k Es ' (t) : f (t + s h) IShifting l t6-2)
_.OperctorJ

IDifferen:iat;on l
d f (t) = ; (t) LOperator J (6-31Dt (t) : ___

.(. Ilde.nt,ly l
._- I f (t) = f (t). JOperatorJ (6-4)

• _-

_'_-" Two well-knowr "_lations among these operators are /
0, J"

F._= (i - _-_ (6-5) '

an_.

h D= - In (I - V) (6-6)

Utilizing Equat!:ns (6-5) and (6-6), the following operator idel_tities _an be
derived

[= 1E_ =h (I-V) -_ . D
In (I - V)j

?

ES = h2 [[ (I-U)-s 21D21ni I __')] ''

Expanding the brackeged ter _s in ,__Yseries yields _-

! ,)
I

E" - h -1 + )i+1 (S, V D (6-7)
i=o

RF2RO_3UCIBILITYOF
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- 1.
E" : h2 -+"+ (s - 1) V-1 + 9,i+ 2 (s) V D2 (6-8)

i--0

s#

where the T'i (s) and 7i(s) are given by the following recursive formulas in s
(see Reference 5)

te

3'o (s) = 7o (s) -- 70 (s) = 1 (6-9)

i

y[ (s) =E T; (0) 7i_ i (s) (6-10)
i=O

, , st tt

: i )i (s) : _'j (0) +Yi-j (s) i = O, 1, 2, . • • k (6-11)
• ' jffiO

t

"x-i t
,/

where _

7i (s) - s + i - 1 i "i 7i_ 1 (s) (6-12) i

and
i-I

' E 1 ,7i (0) = - i - j + 1 7j (0) (6-13)
J=O

i _ _
% _ *' :

It _ I I
. 7i (0)= 7, (0)3'i_ j (0) (6-14)

j=)

Applying the o:erators (6-7) and (6--8) to the funetiovs _(t) and x(t), respectively,
and truncating after k terms, gives

i+ z ,
k ,

I +

t + s h) -- h -1 "_ (t) , ")'i+1(s) VL _ (t (6-15)
i-'O

", 6-4
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x (t + s h) = h2 -2 _ (t) + (s- 1) V-] x (t) + 7i'+2 (s) V ix (t (6-16)
" ':5 L ,.-o

',-_ The quantities V-1 x'(t) and V-2 Bt) are called the first and second sums of _(t),

-: " ar.d satisfy the relationships

t :- V-t _ (t) - _/-l _ (t - h) = _ (t) (6-17)

: and !

V-2 _ (t'j - V-2 _ (t -h) = V-t _ (t). (6-18)

; By varying the value for s, Equations (6-15) and (6-16) define the Adams-Cnwell

:_ predictor-corrector formulas, as well as the Ne_¢oniaI_ interpolation and starting

formulas (Reference 6). For example, the Adams-Co, eli predictor formulas

are obtained by setting s = 1 and x= x(t.) = x(t o + nh) to gi,,e ;"

J

_¢.+1 = h -t _n */ .) _Yi àV i x (6-19) ;
i=0 ,.

and [- k !
Xn+l = h 2 -2 Xn + 7i+2" (1) V i x (6-20)

The preceding equati3ns may be expressed in ordinate form as

" F" k t;on �-h iSn + _,__ofi, _.. (6-21) _'_, ;'

_I an _ ?

x +t = h_ _ a _ (6-22) :•

t-'0

' •
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whe re

IS. = V-I _ (6-23)

ZIS = V-2 _ (6-24) ,n n

I tl

The coefficients ai and fli can be expressed as functions of Yi and _i from the
recursive relations given by Equations (6-9)through (6-14), e. g.,

k

m-- i

). i =0, 1, 2, ...k

1

The Adams.-Cowell corrector formulas are obtained from Equations (6-15) and .. ,"
(6-16) by setting s = 0 and t = t,+ 1 yielding

! t

X. 4�=h , , _* _ (6-26)i n+l-

i-.O

and
i

._ : h 2 _'"--I .. '
\ Xn+ I ISn . a_ xr,,1 - (6--27) :

if0

'$ • II I

where ct*i and/5_ are computed analogously to a_ and "i but using /_ (0) and /_ (0).
The fli and/3 i are called the summed ordinate Adams-Moulton predictor-corrector

coefficients and _i and a_ the. corresponding StSrmer-Cowell coeffic'ents.

These coefficients are tabulated in rational form in Reference 5 for formulas of

order 4 through 15.

REPRODUCIBILITYOF TIU."
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6.2 PR_'DICT-PSEUDO CORRECT ALGORITHM FOR EQUATIONS OF MOTION

• ) The concept of pseudo-evaluation is introduced as a device which helps stabilize -,
the numerical integrationat littleor no cost in computation. Itis recognized .,.

i that

(1) In a predic'.or-corrector scheme, the numerical stability region is ,
_, proportional to the number of derivative evaluations within a given step :

,. (Reference 7);

(2) For sy_,tems of the form _

--f(x)+ eg(x_,

' where • is a small parameter, the stability region is mainly influenced by the

f(x) term. : '

_.: The idea, th,_n, is to introduce into a predictor-corrector algorithm designed m ,,
/S -_

solve the above system a "pseudo-evaluation", i.e., a partial evaluation _ _, where _ .

: ; f(x) is recomputed using the latest corrected value of x, and glx) is re-u ._d bazod ,

• _ on a previous value of x. For example, assume that the equations to be __tegrated \
have the form _;

Ra

?

where the first term represents the primary attracting body acting on the satel-

lite. Assuming the accelerations and sams _ •._

R (tn_i), IS,, V-I "-" (@-29)= Rn' I ISn = V-2Rn' i = 0, 1, 2, • • • k

are kamwn, then the iteralive algorithm to advance to time t is
n+l

(A) Predict: Using Equations (6-21) and (6.-22), predict values (denoted by i':
superscript p)

R(P) (t +,)= [X(nP+_ Y(P) Z (p)] (6-30) ' ;' n+|' n+l e
r

I)((p))(P) 7-(P)] (6-31) _R(_) (tn+I) = L n+l' r,+l'-n+l

: 6-7
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(B) Evaluate: Using Equation (6-28), evaluate

L

_(p)
_(p) --(p).

"" -- _ Kn+l + P (tn+l, Kn �1,Xn+l) (6-32) -

: R (tn+1)--.Rip)3
'_ n+ I j

i
(C) Correct" Using Equations (6-26) and (6-27), obtalp, improved values,

. (de_ by the superscrip_c)_(c) and _(c!. -fl+ I n+ _t

. (D) Test: Compare the magnitudeofthevector [R (p) (tn+,)-R (c) (tn+t)]
• against a prescribed tolerance. If this quantity is sufficiently small,
: --(p) --(p) . ?

proceed to Step (T£);otherwise, replace the values R and R with
R(¢) and _(c) and repeatSteps(B),(C),and (D).

(E) Pseudo Correct: Compute the acceleration s

" "" _ n+1 _(P) _(P).
R (tn+l) - + P (t_ Œ�¤n+1) (e-33) •

", _, n(c)3 /
K-
n+ I _/

1where the P term is obtained from Step B.

(F) Update Sums: Compute theupdatedsums

'Sn+, = ISn�_ (t +l) (6-34) _ ;.

llSn+ I : IIs_ + ISn+I _6-35) ...t

\ The computational cycle (A) -- (F) may then be repe_tcd with n = n : I.

In n-bc_ty or earth-moon trajectory computations, the equations of motion will
frequentlybe independentofthevelocityterm R, i.e.,theaccelerationis ofthe

: form _
r

R =_ 4 P (t, R) ((;-36) _ ,,
R 3 _

I

m__.

6-8 .
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i _ For trajectory segments possessing this characteristic, the preceding compu-tational cycle may be simplified. Particularly in Step (A), the predicted R(P)

! _ need not be computed, and in Step (C), the provisional.corrected values R(¢) arenot req)dred. After the test in Step (D) is satisfied, _(c ) may be obtained by
0

: one application of the corrector formula in Equation (6-26).
t

_. For the case of the integration of VOP type formulations, the concept of pseudo- :

evaluation should be extended to include the major perturbation beyond the
_ central force, in particular, J2 for near-earth satellites (Reference 7). Thib

_. _ is due to the fact chat in these formulations the stability is governed by the
. principal perturbations; the central force contribution is analytically integrated ' s
_ and hence does not influence numerical stability.

F,

_. 6.3 CORRECTOR-ONLkr COWELL INTEGRATION FOR LINEAR EYSTEMS

l From the Adams-Co_ell corrector equations
_'_ Yn+l = h2 (6-37) _"=.: + ./
._ i=O

and

_ F" k ]

_, ).+I= h ZS_+ /3i_;.+I-i "
, t-'O

' : closed form equations can be derived when _.he equatf, on being integrated is t -_,,
linear. Such a linear equation is

_; : a(t) y . b(t) y + f tt) (6-39) , :

(

where a(t), b(t) and flt) are know:'., time var_ng funct.lons.

Equations (6-37) and (6-38j can be wr%ten as

' fYn_l : ha S + a 0 Yn+_ + a Yn+l (O-40) ;'
1 _ t ,)"

_ 6-9 '
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" 1 '! i J" ,,, r I A III....... J 1 i " 1- m _ i.P

.f

] '

; 2"

,': k !.

"* (6-4!) '.:, Yn h ." + MO Yn Yn+l- i

i=l

• ,.\

L

• By expa, lding the derivative _;+ 1 ' we obtain

7

'_ Yn+1 = h2 ISn + _0 a,+1 Yn+1 + aO b.+l Y_+, + ao fn+l + a*i Y_+I- (6-42)
i=l

, = " * 2" " (6-43)}" _ _tn+ 1 h + /_0 fln+l Yn+l + /_0 bn+l _'n+l + ' 0 fn+l + fii Yn+l-

i=l

"_ .: /s /

Defining the known quantities I

x : h 2 ISn + _o fn+x + a* Yn+l- (6-44)n

• i=I

:.. Y --h S n + + fl*_ (6-45)" "',, ,1 /5o f,,+l i n+l i

"_ i=l A _

and the matrix _,

, bn+l2 a L-- | aoL - --

H - (6-46)

h :* h "* l)n+"'0 an+l :'0 I
ii

¢

• I
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j;then Equations (6-42) and (6-43) may be written as
/

Y,,.i I n* Fxn ._

= H (6-47) ? ,

L i '::?°+,JB+ -_ ,:!
The solution to Equation (6-47) is ;

;

Yn_.1 Xn :_

•: )

t = [I - Hi-( (6-48) ; f

I 2° �:
L,

It should be noted that the inverse in the preceding equation will always exist if , ,, _

; _. h is sufficiently small. The inverse depends only on the coefficients a and b, , .j :;

) and need be computed only once when solving equations o2 the form of Eqaation ;
• {

• (6-39)withdifferentnonhomogeneous terms f(t). :_

6.4 CORRECTOR-ONLY ALGORITHM FOR VARIATIONAL EQUATIONS

[ ':
In the Cowell formulation, the position and velocity p_rttal derivatives of the ,

':_ satellite motion with respect to any parameter appearing in the acceleration _ !_

_! model in Equation (6-28) or state (dynamic parameters) may be obtained by the ;_ ,:
_: numerical integration of a system of equations of the form _ "_

"I ! Y = A (t) Y _ B (_ Y _ C (t) (6-49) _ (

• from initial conditions at t o given by *

_: o) 0) {
_{ Y(to) = 0P }it°) = 0_ (6-50) ; :
t.;'

e •

i? where }

; ,_ 6-_1

j ,/?,
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[,, . x •

I7

_- J | • / _I -I I I I ........ I..... ,

r ]8_(t) (6-51) ";
ACt)=L-E-J3x3

B(t) = (6-52) :,
" L OR J3x3

: C(t) =[ 8_(t) ] { 3x 4:matrix of }: L a_ J acceleration partial derivatives (6-53)

' -' 1 i 3x 7matrix °f } (6-54) 7": .( Y(t) L 8P .] [position partial derivatives .'

• "x. s# _"
/ <.

,f, )i

and
;.

Ial_(t) ] [3x _ matrix of } (6-55) , ()(t)= [velocitypartial derivatives 7

-i
The vector _ contains the parameters in the acceleration model to be estimated.

The components of the matrices A, B, and C were developed in Chapter 4. ..,
t

'. Optionally, the components of _"correspond to the spacecraft's positio_ and

velocity at epoch and can _c expressed in mean of 1950.0 Cartesian coordinates,
true of date Cartesian coordinates, classical Keplertan orbital element,Q, ,..,:,
spherical coordinates, or DODS variables. Tho initial conditions for the varia-

tional equations,Equation(6-49),aredependent upon thecoordinatesystems 'i
selected. The partial derivatives of R and R with respect to Keplerian elements
and spherical coordinates can be obtained from Sections 3.3.8 and 3.3.4, re- *

spectively.Sincethefirstsixelements _f_ are thestatevector,thefirstsix

columns of C are zero. Most modelparameters such as thrust, drag, harmonic , .
coefficients, etc. enter into Pit, R, r_) of Equation (6-28) linearly, so that the
computation of C(t) may be simplified by retaining many of the quantities used

in the computation of l_(t). :_

• 6-12 _.
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•
:: The integration of system Equation (6-49) may be performed by the utilization. 'i

of the corrector-only fornmla Equation (6-48) as follows° Assuming that the ,_
satellite position and veloci_.y, R(t and R(t 1)' the matrices _ i = 0, 1, ,,

-_ 2, . . . k and summation matrices ip and iIp_ (3 x _) are known, then the _ ,
algorithm to advance Y to _:tme t.+ 1 ia: !

: _ (A) Compute the matrices A(t,+ 1) , B(t,.l) , and Clt, à�ˆ�whichdepend only !_' on t +i,R.+I' and R-.+I.
i'

(B) Compute the 6 x 6 matrix [I - H]-1 where ;_

* * f,
: ,., _'h2 a o A+I b:; a o .,,,. 1

_ H = 16-56)

' _"l -h_° An+' hfl° Bn+I'-
ao andflo are the correctorcoefficientso[ Equations(6-26)and (6-27),
and h is the stepsize. /t,_,

', _i (C) Form the 3 x _ matrices, X and V

C 2": _ Xn = h2 IPn+ ai Yn+l-i + a; Cn+ (6-57) ;

"'" _i V = h Pn + fl_ + fl:Cn+, (6-58) "_',, i=l

_ (D) Compute the required position and velocity partial derh, atives, Y \�.t.ill: and _',; �8�,b _thematrix equation i
_'_ _,

_. :- [I-HI L -] (6-59)

/

!_, 6-13 ,
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e

/

{E) Update acceleration and sums by
i_o ,4

:" :_'n+1-- "_++.Y-+£ ""_+l Y.+t + C-+I (6-60) _.
t+ +,

:+ Ipn+l = Ip., + Yn++.. (6-61) + ,
+.+ ++

:+ . +Ip,+t = IIpn + I_n �¤�(6-62)++

completing the cycle. After computing Rn+ 2 and Rn+ 2' Steps (A) -- (E) may be
repeated with n = n + 1. )

At points along the traectory where the equations of motion are velocity-free, :_
i. e., of the form of Equation (6-36), the matrix B in Ec ,ation (6-49) is zero, so :

)_ that it is necessary to solve a system of the form

;¢ = A (t) g + C (t) (6-63) _,:+

, As in the case of the equations of motion, the c,_mputational algorithm can then :"
be eimplified. I_ particular, in Step (A) only Lhe matrices A and C are required, I ++i_

' • and in Step B, t! becomes the 3 x 3 matrix _._

H : h2 ao*An+1 (6-64) ?

The required partial derivatives are then given by '_:.

i

Y.+I = [I - H]-' X. (6-65) , _,

- h A+,v..,+,+v° (6-t+6> ,',,
+, ,,',

++ ¢ +,

The order and stepsize us(d in the integration of the variational equations may

differ from that used in the integration of the equations of motion without any : "
significant difficulty. +' /' _

1

REPRODUCIB_ITYOF TI_
6-14 ORIGtNALPAGE ISPOOR
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6.5 MAPPING OF POSITION PARTIAL DERIVATIVE_

It is well known from the theory of linear differential equations that +he solution _ i

of the h-dimensional linear system ;, _:

.2" t ?

x = D (t) E (6-67) :

)
satisfying the initial condition

t

(to) -- Xo (6-68) _ :_"

t

is given by

(t) = _ (t, to) _0 (6-69) _

¢

where ¢ is a fundamental m_J_rix solution of Equation (6-67), i. e., an n × n
matrix satisfying

': i _ = D (t) q) (6-.70) - _' _)

:l; with init:al con(litton

$(t o, to) = I (6-71) _

_: In our context, _(t, t o) is called the state transition matrix. The properties of
¢ can be used to enhance the computational algorithm for position and velocity i

_ partial derivatives as follows: during the integration of a trajectory, s colunm ,;

"- _i of Clt) corresponding to a dynamic parameter m=y become zero. For example,
when leaving the sphere of influence of the earth, the acceleration partial _

._ derivative with respect to a gcopotential coefficient of the earth will become
_ effectively _ero, If we denote this time by T, then the poMtion partial derivative '

,_-' with respect to _his parameter which we denote by x (t), will satisfy an equation
;_ '_ j ,,,
_; of the form of Equation 16-67) for t > T where

j
,_:, 0 i

_ D (t) =

'," 6-15
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j
i with an initialcondition_(T). Let 4)(t,T) be the statetransitionmatrix satisfy-

!ng q_(T,T) ; I. Then, the required position partial derivative may be -btained

for anyt > Tby

i

i

; _ (t) = 4) (t, T) _(T) (6-73)

• The overall state transition matrix 4) (t, to) for t > T may be computed L_,

4)(t, to) = 4)(t, T) # (T, to) (6-74) :

where the £1ements of the matrix 4) (% to) are

d

' _ 4)(T, to) : (6-75) _ ./" ',

_, ? R (T) ? R (T)

a _

whlch are contained in the Y and ) m_.triceswhen t = "f(assuming _ cm:tains

the state)• The computational strategy for the computa),ion of the par_i_, deriva-

tive of -"' ;" to ase the method of Section 6 3 up to t = 'r• At that point the matrix

4) (T, to) is stored, 4) (T, T) is initialized, and for any t > T, _(t) is computed _-

using Equatiop. (6-73), and 4)(t, to)is computed using Equation (6-74). A similar

process may be used for mul*,iple event times ,i- , T2 ..... T at w'_ich various ,
columns of C(t) become zero. Assuming T 1 < _2 < < T, <' t, Equatioa (6-741

-. becomes

4) (t, t 0) = 4) (t, Tr) 4) (r r, T._I ) . . . ¢b(T 1, to) (6-761 .:,

6.6 THE RUNGE-KUTTA _NTEGRATION METHOD :

The Runge-Kutta metkod is a numerical integratio_ technique by means of which

the value of the dependent var!abh, at some future tame can 'be calcalated from a

,_ weighted sum_atior. 2ormula, similar to a numeric a! quadratv"e. TW._ method

is equivalent _o a Taylor series solution of the equations .ff motion, ) to .t certain

power el the integrationst,pslTe in the independent variable, _aylor s.:ies

' 6-_b

1976017203-286



:" l tt _+ ' " '+

i _ " ' '+

+

t
f __

J

f

i__..f

'i i 4_ solutions require differentiation of a given function a number.of times, followed

: I by evaluation of these derivatives at the point of interest. However, the Runge-

Kutta method bypasses these differentiations by evaluating the derivative on the

: right hand side of the first order equation at a number of sel_cted points. For

. example, in the equations of motion the acceleration per unit; mass is evaluated
a number of times at each integration step in order to prooeed to the next inte-

:+ gration step. i

Runge-Kutta methcds have the advantage that the inter-¢al of integration can be
_: readily changed. The formulas are single step; thus., they do not require any

past history of valaes, l" common with other special perturbation methods,
: the Runge-Kutta method is extremely flexible• The acceleration models in

GTDS may be changed without affecting the implementation of the Runge-Kutta
formulation.

|
i The Runge-Kuttaformulauseo in GTDS is an ,Mghthorder formulationrequiring "

/ ten function evaluations (Reference 8). The expression f(x, y) is the derivative on
: therighthand sideofthefirstorder differentialequationdx/dy = f(x,y)which is

: to be evaluated. This fuL_tion arises from the equations of motion or from the +
, : variational equations. The Shanks e_ghth order Runge-Kutta algorithm is com-

puted inthefollowingmanner. The followingformulasapplytoa singlecompo-

+
' nent of the vector of the quantities beinf_ integrated where the vector of depeDdent ]',

_ ._o_+ variables is denoted by R and the independent variable is denoted by y. j
• _"

fo = f(_o,Yo)

fl = f_o + kl'Y0 + alh )

#

f9--f(x0+ k9'Y0 + agh ) "'

. where

': k_ = ath bl.o fo

k2 = a2h LI b2jfi
i

+,+

_' j

, £k9 = a_ b_jfj

:+ _ l=O

6-17
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' The next value of the component x is corn_ ated from the present value x o and the

S.hankscoefficients a _, b _i ' c

_ x = x0 + E cifi /
i=O

In these formulas, the ttunge-Ku_a stepsize in the independent variable is _.enoted
_ • by h, and the subscript "0" designates current values. Table 6-1 contains the

coefficients for the eighth urder ttunge-Kutta scheme; the coefficients are pre-
_._- sented in a form convenient for calculating the summations required to determine

the ki)s. _'.r

TABLE 6-1 -:
_#. •

;.,:_ --_ i s i a i bij ._..

2"3 27 _" -

2 1
(1 + 3) _ "I

"_ 1 1 (1 +0+3)• 3 _ 1-_

1 1 (I+0+0+3)

.L
2 1

_' 5 ,,- -- (13 +0-27 +42 +8) _ -,, o 54 -"
_r

_"_..__ 6 _-1 432"-'-'01(389 �0- q4 + 966 - 824 �243)_;

1 (-231 + 0 - 1164 �656- _22 + 800) '__,.. _ 1 _

5 1

-_ 8 _ 28"-8(- 127 + 0 + 18 - 67_ + 456 - 9 + 576 + 4) _.

9 1 .1_ (1481 + 0 - 81 �7104- 3376�72 - 5040 - 50 + 720) ' '_
820

_'_ 1 (41 0 0 27 272 27 216 0 216 41_(Co+Ci+C2+C_+C4+Cs+C6+C?+Cs+C_)= _ + + + + + ��++

• 6-18 ;
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6.7 THE STARTING PROCEDURE

Two starting procedures are available in GTDS, an iterative method and a Runge-
Kutta method. The iterative starter is generally used; hot "ever, the Runge-Kutta
method may optionally be used as a starter for multi-step integration methods.

6.7.1 Iterative Starter '

The starting arrays
"..t"

Rn-i' Yn-i' i =0, 1, 2,-.. k (6-77) :o

and the associated first and second sums required by the integration process
i

may be computed by an iterative process based on Equations (6-15) and (6-16)
using varying values for s. Let m = [(k + .1.)/2], where the brackets indicate the :.

greatest integer function, and Ro, R0, and R o be the given initial values at
t = t o of Equation (6-28) (the process is analogous for Equation (6-49)). The
values :

Ri' Ri' Ri' i = ±I, +2, .. • +m

can then be computed by _uccessive approximations, yielding the required

_ starti.g values.

Let _' "i (s) and _ i (s) be the coefficients of the ordinate forms of Equations (6-15)
and (6-16) with k = 2m

, (6-.,'8)_¢(t n + s h) =h + _i (s) ,,.
L

i -- 0 I '.:!"

2m :"

x (t n + s h) : h2 IS. + (s - I) Is n + _ i" (S) __ (6-79) -i;::"

i=O .
-f

Then letting R( J> denote the j th approximation, the (j + 1) _t approximation is

given by the following procedure ,_;

(A) Compute the sums IS and IxS using ' "
m m

" 2m

ISm - - Si (- m) _ (j) (6-80) :"
m- i (_

iu0

di_ 6-19 ,_:

_ _- =_ In , I ,...... Po mgm ........ iiiiq m _ _ m _ m1_m iir n lallal mlIgm lit '_,, ,
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2m _ " /

. (J) (6-81),,so +(m+l),s.- (m)
hm

{=0

(I) Compute the correctedpositionand velocityvectorsusing Equations
(6-79)and (6-78)withn : m and s --(l-m)

2_o _(i m)_CJ_ (6-80)

_(j+1) ".• =h + 8 (i -m) (6-81)I

i = ±I, ±2, ...±m

i (C) Compute the acceleration _(J+ 1 )i using the force model. This completes
the iteration. Steps (A) - (C) are repeated until the successive values _._/

of R_ and R{ converge.

AS in the process described in Section 6.2, if the accelerations are velocity-free, _--)
simplifications in the computational algorithm may be made. In particular, in
Step (B) the computation of 1_!J_t) may be omitted until convergence on the

1

positions R i.

The first approximation (j = 1) may be obtained by a variety of methods: Near

a primary, two-body analysis m,_.y be used effectively, either in the form of . +_
orbital elements or f and g series; between two prim=tries, either a single step

low-order method or the use of a prestored ephemeris should be used.

6.7.2 Runge-Kutta Starter

The multi-step methods avoid the multiple function evaluati.m_s at each integration
step which are characteristic of the Runge-Kutta method, but they are not self-
starting. Starting from an initial position and velocity, the Runge-Kutta method

i can be used to build the required starting array for the Cowell and Time Regu-
_ lartzed Cowell equations of motion and variational equations.

6-20 REPRODUCIBILITY OF THE
ORI(KNAL PAGB IS POOR
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6.8 INTERPOLATION

Interpolation for values of R(t) and R(t) for t_ 1 < t < t may be obtained from
Equations (6-79) and (6-78) using s = it - tn)/h. The accuracy of this interpolation
is consistent with that of the integration.

6.9 LOCAL ERROR CO._H'ROL ,_

Local error control is performed by a variable stepstze process automa'.'_ally
and semiautomatically (see References 9 and 10). In the automatic mode, step-

sizes are selected based on the magnitude of the local error, __, computed on ,
a step-by-step basis by the Mflne formula :'

C IR(np) - R(nC)I (6-84) :E = " ,;_

,"a '1 2%
i:
?.

where C is a constant depending o_Lthe order of Equations (6-22) and (6-27).
R(P) and R(_ ) are the predicted ant, finally accepted position vectors, respec- _/'$_n n ' '_

tively, computed at time t = t. The stepsizes are selected so that e at each .

O step satisfies the constraint equation ,%

T2 "_ _n _ TI (C-85)

where T1 and T_ are specified upper and lower bounds on the local error. ' :,

The variable stepsize integration algorithm is as follows: at each step n, the 1
test in Equation (6-85) is performed. There are three cases: _, _

(A) E > T 1 ; the stepstze is decreased, and the n th computed point is re-
Jected nnd recomputed with the new stepsize, where the required back "!"

values are obtained by interpolation, i

(h) _n < T2 | the stepslze is increased, the n t_ computed point is accepted
and the integration proceeds with the new stepsize, where the required _,

back values are ob_tned by usLug every other point from a saved array _i
< 2h. A maximum

ofpointsifhnow = 2h or by interpolationif h < h ,,_
increase of 2h is allowed, i_

'i

6-21 .:,
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_ (C) c satisfies Equation (6-85); the integration proceeds uninterrupted. (,_
_ I In either case (A) or (B), h is computed by the formula ,_
_" I new i ._£

Le J i I,.

where T3 is a specified 'Lallowable" local error satisfying T2 -< T a -<TI .

In the semiautomatic mode, stepsizes are specified as a function of radial distances ;_

from the primary (Reference 10). The required stepsizes and radial distances _
may be determined by an integration calibration process using the automatic

• variable stepsize integrator. Since the stepsize distribution over the orbit
generally depends on the orbital elements, particularly the semimajor axis and
eccentricity, such a calibration would be repeated only if these elements changed _
co_Jderably. This model of integration is generally less sensitive to the nu-
mertcal difficulties associated with variable stepsize integration. The use of a _.,

regularizedtime variablealsoproves usefulforthisproblem. This technique _
isdescribedinthenextsection.

J!
The same stepstzes are used for integration of the variational equations and the

equationsof motion. O :

_ 6.10 TIME REGULARIZATION ::

For orbits that are highly eccentric or that connect regions with significantly ',__
5 different gravitational force magnitudes, accurate direct integration of Equation _
;_ 16-28)or 16-4£),withtime as the independentvariable,usuallyrequireseither

a very small fixed stepsize, or many stepsize changes in a variable stepsize ! _

_i_ scheme. Frequent stepsizechanges are costlyand resultinerrors propagating \
_" due tothe interpolationprocedureused torestart. ' !

_,' To improve this situation, the classical approach is to transform the independent '
variable to a new variable, denoted by r, defined by the relatlon (Reference 11) "

%

..,, _ =}r_= 1 :; n =;2 (6-87)5

: I

4' I

6-22
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l Forn= 1 or 2, this variable corresponds to ghe use of eccentric anomaly or true
anomaly as the independent variable in the integration of elliptic raotion. The
use of regularization in the computation of free-flight earth-moon trajectories is
investigated in Reference 12. This study indicates increased computational
accuracy and a significant reduction in computation time due to regularization.

To express Equation (6-28) or (6-49) in terms of the new independent variable r,
the following notation is employed

dR_ R_
D g - _ (6-88)

aT

d2 g RnD2_-- = InR_-__ _+R_"_] (6-89)
d_2 fl-

where

=__R"R (6-90)
R

O and g(t) is any arbitrary vector-valued function in the t system. Similarly,

D_1 g = _ v"_'_ g, (6-91)
R _

D-2 R = "_= _ IR'. R. r' R' i
.... g (6-92)
Rn Rn+l

where the prime indicates differentiation with respect to r, and

Rn-|
R' = _ (R ' _) (6-93)

v#

The transformed Equation (6-28) may then be expressed as 0

R" : D2 R (t) (6-94)

O 6-23
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¢ 2

_ t" - (6-95) #

2

The integration of Equation (6-95) is required to compute the time t as a function .,
of the new independent variable _-. i _;

The integration of Equations 16-94) and 16-95) may be carried out with essentially }
the same procedures outlined in the previous sections. The additional remarks ;:
required are: _

(A) Given t@), R(r), and 1_'(_), a corresponding R"(r) is computed by first _

computing the time derivatives

- _ - (6-96)R (r) = D-l R' =_ R' (_) :

R" (r)

R (r)-- '_R(_') +P It (_'), R(_'), R(T)] 16-97)
R3 (r) '_

yielding ,:

= R2n ( _r_ ') (6-98) ,
R" ('r) nR'R' R2n'3 R+_-P t, R .- R'R _ R" _"

(B) The value of the independent variable _ corresponding to an output

requesttimeorobservationtimet_may beo_tainedby inverseinter- .""
polation in the t i array obtained by the integration of Equation (6-95).
This value of _ may then be used to compute the required R and R by ,_ .;

,\ the usua I interpolation procedure indicated in Section _.8. ,,

Analogous regul_rtzation procedures may be used for Equation (6-49). The
regularized variational equations are of the form _.

/,

[R_ ] R__"[B ni_I l R 2_Y" = A(t) Y + _" (t)+--f-jr+_/_ c(t) 16-99)

':, An additional advantage of using regularized time is that the initial (fixed) step- '
size may be conveniently selected as a f_ctlon of the regularized period S,

i where, if T is the satellite period,

. i_C_,t)'JCl_I].I'FY OF Till
6-24 ORIC_:NALPAGE ISPOOR
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• i!

S = ___"d t (6-100)
R n _:,

i .i

The integral may be evaluated by quadrature for the two-body problem by a ,

change of variable from t to true anomaly, f, res, tlting in the formula i_

S = 1 (_ \(1 + e cos f) n-2 d f

p (n-2+ 1/2) "]0 (6-101) '

where p is the semilatus rectum of the ellipse. Frequently, a fraction of this
period (of the order 1/100) will _erve as an adequate stepsize for the integration
of Equations (6-92) and (6-93).

A drawback of the method is that the equations of motion in the • system (Equa- _
tion (6-94)) always contain explicit first derivatives, regardless of *_hesitu- J¢:
ation in the t system, (see Equation (6-92)); thus, the computational simplifica-

tions possible for velocity-free accelerations do not apply. Hence, the trade- ;_

off between the advant_.ges and disadvantages of the regularized time integration
depend upon the stepsize, length of arc, efficiency requirements, and eccentricity
magnitude.

Experience has shown that regularized time integration considerably improves
the efficiency of variable stepsize integration _or moderate to high eccentricities
(e Z .2). For the Cowell formulation, the value n = 3/2 seems !o give best results,
whereas, for orbital element formulations, the optimum value c:n appears to be t .
2 (Reference 13). Improvements in the accuracy of the integration of the time '
equation (Equation (6-95)) may also be obtained through use of a time element
(see Appendix B). ,_

F

,
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•: OBSERVATION MODELS

Spacecraft tracking observations involve the measurement of some physicalf

-i_ property of electromagnetic wave propagation between the tracking station and
the spacecrait. The process of analytically relating the measurement quantities

__" tc the spacecraft state vector is referred to as observation modeling. This
_ ohapter prese,_ts the models and associated equations for computing obscrvations

within GTDS. The models consist of kinematic equations which yield the. 'tideal" •

_ values of the observations in traject,_ry-related units (e.g., rang_., range rate,
._,

azimuth, and e]ev_tiozl). Therefore, the mod61ed observations are functions of
the _pacecraft's _st estimated position and velocity, as well as specified model
parameters (e.g., tracking station location and timing errors). "Actual" data

_ are usually preprocessed in a separate computer program which calibrates, time-

"i_,_ j- corrects, smoothes, compact a and converts _he raw trackin[r dat_ into units ,

_ .( compatible with the calculated observa*Aons. Howe'. _r, the preprocessor program i_
_:, ' does not correct for the _ifects of atmospheric refraction and may not _?crrect
: for propagation times, transponder delays, or antenna mount errors. As a result, _

"" corrections for th_se systematic ,.rrors are computed in GTDS and applied to / _,
the "actual" data. Systematic errc:rs may still be present, bowever, due _o the

_ preprocessor smoothing and compactio._. "_

_ The procedures and formulations presented in this chapter describe all d _t_
• types which are implemented in GTD_. Section 7.1 presents a general de,_cription

of the forms of the computed observations and their partial derivatives. ,_ction
; 7.2 presents equations and transformations _or modeling ideal observa_o_ _ and

their partial derivatives for ground-based tracking systems. Sections 7._, 7.4,
ah_ 7.5 discuss satellite-to-satellite tr_ kirg, radar altimeter tracking, a xi very

_ long baseline interferometer tracking, re._ctively. Atmospheric effects are

-i,\_ d_scussed in Section 7.6, and ._ther corrections (light time delay, transponder
•.o delay, and antenna mount c_rrections) are presented in Se,'.'tiou7.7. Finally, the
. interrelationshipbetween theobs_r,,-+_onmodels and the'estimst.ionprocess is
_ summariz, _d in Section 7.8.

_ 7.I GENEt_AL DESCRIPTION

The basic orbit determination process consists of dlfferentJ_Uy correcting esti-
mates for a set of parameters from an observational model to mlntmize the sum
of squares of the weighted differences between the measured observations a_d the
correspondingquantitiescomputed from the model. In GTDS, thls,nodelis
assumed to be of the form

:" 7-I
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° t3
Oo = fo[F,t (t + _t, p, r ),rlt(t + St, _, _)] + b + RFc (7-1),v

L"

,_ where

, t -_ time tag of the observation. _

S t "_ timing bias.
¢

4

' . 0 c _ computed observation at corrected time t + _ t.. :.

' - - _- vehicle position and velocity at an appropriate tiw.e related to_- tit' rl t

t = t + _ t. For most obser_ ations modeled in G_ DS, the position

and velocity are expressed in local tangent coordinates with

_" respect to a station posit:'on r-_. Other observations are modeled
; in terms of the vehicle inertial state vector. In either case, the

' state vector is de,v.endent on the dynamic 9ar_meter vector P.

b _- measurement bias or offset.

:" f0 _" geometric relationship defined by the observation type at time ,_../

t+_t.

;._ RFc _ correction to the observation due to atmospheric refraction,
light time, transponder delay, antenna mount errors, etc.

e

_ The observational model parameters which may be estimated are:

¢-

_. _ _. dynamic parameters in the equations of motior, which can be
; estimated. These include variables related to the position and

_- velocity_ gravitational harmonic coefficients, drag parameters,

etc. [_;

"X,,.
° "fs _ station location in earth-fixed coordinates.
>

: b _- measurement bias, which depends on the measurement type and ,

the tracking station.

_ t _-timing bias, which is both station ,_nd pass depende _t. _i
_ w

The observation models simulate the following tracking system data types:

;- • Goddard Range and Range i_ate (GRARR) System, Applications Technology

;- Satellite Range and Range Rate (ATSR) System, and Unified S-Band
I (USB) System

": 7 -2
i
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'_ 117, Range

(2) Range rate or range difference

13) X angleor azimuth
(4) Y angle or elevation

• C-Band Radar

(1) Range
. (2) Azimuth
,._- (3) Elevati3n

qJ MiifitrackInterferometerSystem

"_ (1) Dire,_tioncosine

(2) Directioncosinem

• Satellite-to-Satellite Tracking (SST)

_ (1) Round trip light time _ /t,_: (2) Round Lrip light time difference

• Radar Altimeter(RA)

(1) Altitude

:" • Very Long BaselineInterferometer (VLBI) System

(1) Time difference

:; (2) Time-rate difference

\'_ After preprocessing, some observations are converted to metric form while
others are in the form of time intervals. In general, the time _ag on each obser-
vation is converted to Universal Time Coordinated (UTC), which is derived from
Atomic Time A.1 so as to be a close approximation to UT2 (Chapter 3).

The differential correction process requires the computation of the "computed"

measurements and the systematicerror correctionswhich are appliedto the -_

. [ actualobservationdata. The process alsorequirescomputationofpartial _*
,-

derivativesof themeasurements withrespectto the model parameters p, r-,b,
and _t. These partialderivativescan be expressed as follows

7-3
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_, It is assumed that the partial derivatives of the systematic error correction terms .

, RFc with respect to _, "rs, b and _t are either zero or negligible.

7.2 GROUlgD BASED TRACKER MODELS

f This sectton presents the tranr.formations and equations for computing the ideal
. measurements (i.e., no systematic errors b, RFc , or _ t present). The measure-
:. ments correspond to those from the GRARR, ATSR, USB, C-Band, and Mint*.rack [

Systems. Since many of the measurements are ,-.ommon to more than one of
_ these systems (e.g., range rate _ is common to GRARR, ATSR, and USB), the

section is organized by measurement type rather than by measurement system.
!

{ 7.2.1 Tracking Process

For all systems except the Minitrack system, the eleotromagnetic signal is trans-

_ mired from the ground station at tilTLe t.r and is received at the satellite at time
_. t,. The signal is retransmitted by the _a_.ellite transponder a_ time t v + A% '
_ where A_ is the transponder delay. The return signal is receive_ at the ground _'

station at time t x. Thus, precise modeling requires that the tracking system f_
: be treated as a dynami_ process, since bo*.h the satellite and the tr_king station "?_

'_ are moving relative to inertial space _uring the time it takes t_¢ signal to traverse ' *_

the round trip from the ground _tation to the satellite ai_d return.

_ The _.racking instr,.n,..cr, t_ measure three basic quantities: The time interval _

_; required for the signal to traverse the path from the ground transmitter to the

'* 7-4 ,_
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satellite and back to the ground receiver, the direction of the received signal at
_ the ground station as measured by the receiver antenna g_mbal angles, and the
: Doppler frequency shift of the received signal compared with the transmitted
_ signal. Preprocessor programs multiply the round-trip time interval by the
" signal propagation speed, thereby converting it to the geome*.ric distance. Ther
• GTDS measurement model then relates the station-to-spacecraft range vector

to the geometric distance and its direction angles at the receiver. The Doppler i
frequency shift data is related to the station--to-spacecraft range rate as described

!_ in Appendix A, Sections A.1.2.3 and A.3.2, and in Appendix C.

7.2.2 Local Tangent Plane Coordinates

The ground based tracking measurement models are most convenien+Ay expressed
! in station-centered local tangent plane coordinates except for the USB and SST

range and range-rate measurements. At the time of the measurement computa-

i -i tion, the spacecraft state vector is available in either mean of 1950.0 or true of
( reference date inertial coordinates. The inertial state vector must first be

• -" transformed to body-fixed coordinates using the appropriate transformation
_ _ matrices from Section 3.3. The transformation from mean of 1950.0 coordinates
_ to body-fixed coordinates is expressed as

Yb(t) --BCt) C(t) RCt) (7-3)

.. rb(t) --]3(t)C(t) R(t) + B(t)C(t)R(t)

_, where C and B are the transformation matrices from mean of 1950.0 to true of
_ date coordinates (Section 3.3.1) and from true of date to body-fixed coordinates

(Section 3.3.2), respectively; R and rb are the spacecraft position vectors in
mean of 1950.0 and body-fixed coordinates, respectively; and R and r b are the

;+\ spacecraft velocity vectors Ln mean of 1950.0 and body-fixed coordinates,
"_ respectively. The tracking statLon position vector _',, expressed in body-fixed

: coordinates, is given in Section 3.3.7 as

_N,+ h,) cos _, cos _,-

_ -r = (N, +h)cos_, sin_., (7 -4)

'_ [N(1 - e 2) + hi sin _=_
c

where e2 = 2f - f =, f is the flattening coefficient of the earth, and

_, N, - (7-5)
++ _1 - (2f - f2) sin 2 _+

REPRODUCIBILITYOF THF,
OEI(]_AL PAGE• IK_t
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The spacecr_t position and velocity vectors, expressed in local tangent plane _-_
, coordinates, are given in Section 3.3.7 as

:" _lt (t) -- MI t ('rb (t) - "r's) (7-6)

! rlt(t ) = Mltrb(t )

{

Substituting Equations (7-3) into Equations (7-6) relies the local tangent coordi- _!Q

nares to the inertial coordinates

_" rlt= Mlt[BCR(t)- _l

{: - [13CR(t)+ BC_(t)] (7-7)rlt - Mlt

_: _- The vectors -r'It and rlt are used to model the tracking measurements.
i

t.

,_ t The partial derivatives of the calculated measurement are computed using local
tangent coordinates as the intermediate system (except for the USB and SST

;: _-'_" ranges and range rates) as follows /

,_ "_O¢_p_ _f0_p _f0__r..tt _'rlt_R _bR + -7--_f°przt _ + _rlt-" b_PPl (7-8) (-_}' ?Tzt L_?R ?P ?R

. From Equations (7-7)

}/ "O}'zt ?rz t (7-9)
= Mlt BC, 13C, ?Tt t = MjtBC

8R _ " Mtt _-'-_

Substituting Equations (7-9)into Equation (7-8)yields

_0_ _f° _R _f° IM _R _'_Pl (7-10)
= _ MI t BC + "-7-- I t ]3C + MI tBC

The matrices _R/b_ and _/_ are obtained from the variational equations
described in Chapter 4. The partial derivatives of the vacuum measurements,
_)fJS_lt and _f0/_t, are presented in the following subsections.

r

7-6
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7.2.3 Measurement Equations and Partial Derivatives

In the absence of an atmosphere, electromagnetic signals follow a straight line
path between the station and the spacecraft, traveling st the vacuum speed of

light. Equations describing vacuum signal propagation are presented below
along with pertinent partial derivatives required for the orbit determination
and error analysis processes. Corrections for atmospheric effects are presented
in Section 7.6. A functional description of each trajectory sensor system, as
well as a description of the data preprocessing, can be found in Appendix A.

7.2.3.1 Gimbal Angles

The gimbal angles provide the direction of the r,_ceived downL._k signal at the
ground station. For rotatable dish antennas the direction angles a_-9 measured
from the antenna gimbaling system. For the fixed antennas in the Minitrack
system, however, the signal direction is determined from principles of
tnterferometry.

Assuming no atmospheric refraction, the signal direction at the ground receiver
is determined from the straight line propagation path from the spacecraft at

time tv to the receiving station antenna at time t_. GTDS approximates this
direction by the instantaneous straight line path from the spacecraft to the station

O at time This approximation introduces negligible error in the signal directiontv •
angles because of the relatively small distance (relative to inertial space) tra-
versed by the station during the downlink propagation time interval.

The following sections describe the various gimbal angle models included in GTDS.

7.2.3.1.1 Gimbal Angles Xs0 and Y30 (GRARR, ATSR, USB)

The gimbal angles for the 30-foot antennas in the GRARR, ATSR, and USB systems
are denoted X30 and Y30. The Xa0-axis is aligned north-south in the local horizon
(tangent) plane at the tracking station. The reference plane for the angular
measurements is the vertical plane which is aligned east-west and includes the

tracking station zenith. The angle Xs0 is measured from the vertical axis
(zenith) to the projection of the station-to-spacecraft vector onto the reference
plane. This angle is positive when the spacecraft is east of the station, i.e.,

xlt_ __._< < _r (7-11)-t'-1 x3°-

|Z ,_,
|
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_:'" The angle Y._o is measured from the projection of the station-to-spacecraft vector (__ ,:"
.... onto the reference plane to the vector itself. This angle is positive when the

": spacecraft is north of the station, i.e., _

_, --- 7r (7-121Y3o = tan-1 7r_ Y3o
• \Jx),+zL 2 -<'_

,& The partial derivatives of X3o and Y3o with respect to the local tangent )dane
:_ - coordinates are

_ ?Xso 1

_ ?L, (x_,+z_,) [_'''o, -x,,]

_i _x/°=o (7-13)
_Lt

and

_ - 1 F--XltYlt V_I t + Z_t , --YltZlt 7

/x,,+z,d d)

_Y3o (7-14)=0

_?'tt
where

p=vx?,+yL+"),

" 7.2.3.1.2 Glmbal Angles Xss and Yas (USB)

_, _ The gimbal angles associated with the USB 85-foot antennas are denoted Xss and
L : Yss" The X ss-axis is aligned east-west in the local horizon (tangent) plane at

the tracking station. The reference plane for the angular measurements is the
vertical plane which is aligned north-south and includes the tracking station

zenith. The angle Xss is measured from the vertical axis (zenith) to the pro- •
: jection of the station-to-spacecraft vector onto the reference plane. This angle

is positive when the spacecraft is south of the station, i.e.,

: _ 7-8 RF_£ROI')UCIBILITY OF THE
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_'es= ten'l --_ -_Xss_<-17 (7-15) :
zlt / 2 2 _-

The angle Yss is measure_ from the projection of the station-to-spacecraft
vector onto the reference plane to the vector itself. This angle is positive when _ _
the spacecraft is east of the station, i.e.,

Xl t 7r _
¥8S = taN'l " --" _

\v/yft + zl t 2 - Yss <7 (7-16) "i"

The partial derivatives of Xss and Yss with respect to the local tangent plane _.:
coordinates are _:

c

J

_Xss_ 1 [0, -Zlt, Ylt ] ='"

(7-17)
_Xes ;,-0

Q

O '771 t ":"

and _i

_Yss= 1 _t + zx2t -xltYlt -xltzxt _ +'_

?Y8s 17-18 ) '-0 '_

?r_t "

7.2.3.1.3 Glmbal Angles A and E (ATSR, C-Band) i

The azimuth angle A is measured in the localtangent (horizon) plane, clockwise j_
from north to the projection of the station-to-spacecraft vector onto the local "_'e ' ,'

tangent plane. This angle is positive when measured eastward (clockwise) from _
north, i.e., :'

7-9 _
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-_ t + yt2t

; 0 <_A _<27z (7-19) '-

_. A = cos "1 "

- _ :X +Yt

_ The elevation angle E is measured from the projection of the station-to-spacecraft

i_.... vector onto the local tangent plane to the vector itself. This angle is positive
whenever the spacecraft is above the horizon, i.e., _:

z=t.n" f. -_'-_ t 17-20) _:

; The partialderivativesofA and E withrespectto the localtangentplaneco- _.
ordinates are

-- [Ylt'-xlt' Ol I, _ ._
-_'_. (x,_,.yL) !

17-21)
!,

• "1 t

_' and ,t _,_

?E _ 1 _.-XltZlt -Ylt zlt , t/X--_it+'-_Ylt 1 :_'lt ,02 "Lv'/''-_XIt"'_ �Ylt' V/Xl2t �Yl2t: ":
\

?E _ 0 17-22)

#l t /
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7.2.3.1.4 Direction Cosines Z and m (Minitrack)

The direction cosine _ is the cosine of th? angle between the station-to-spacecraft
vector and the axis pointing toward the east in the local tangent system (the
xlt -axis). This direction cosine is positive when the spacecraft is east of the
station, i.e.,

xl t (7 -23 )
P

The direction cosine m is the cosine of the angle between the station-to-spacecraft

vector and the axis pointing toward the north in the local tangent system (the Yl t -
axis). This direction cosine is positive when the spacecraft is north o[ the station,
i.e.,

Ylt (7-24)m'-_

P

The partial derivatives of _ and m with respect to the local tangent plane
coordinates are

" _ ___._r| "(ylt2 + Zt2t) ' _XltYtt ' _XltZtt]

(7-25)

_'-0

arlt
and

_m 1 3
= [-xttYtt, (X12t + Zlt,. -YltZlt ]

aT'lt p3
(7-26)

am
---:.-. -- 0

p a_l t

7.2.3.2 Range (GRARR, ATSR, USB, C-Band Systems)

From th,_ description of the tracking process in Section 7.2.1, it is seen that all
trackers provide the user with the round trip tight time delay from the trans-
mitter through the satellite to the ground receiver, and an associated time ta_.
The round trip range is seen to be

S 7-11
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L,

_i- PRT- [_(%)- _T(tT)I �ITR(tR) -r-v(tv + AT)I (7-27) O

_ where

_ PRT"_ round trip range

_" _ satellite position vector in inertial Cartesian coordinates

_ . r-T _ ground transmitter position vector in inertial Cartesian coordinates

:_ "f_ ._ ground receivez position vector in inertial Cartesian coordinates

Ar _ transponder delay

tT _ time signal is transmitted from the ground station

i tv "_ time signal is received at the satellite¥

j

'_ I tR_ time signal is received at the ground station

i

.! In the case of USB and C-Band, the time tag on the raw data corresponds to th_ /"
time t_ at which the measured signal arrives at the ground receiver; for GRARR

and ATSR, the time tag on the raw data corresponds to the ground receive time _-[l._ ' tR less the measured value of the round trip light time delay. For all systems,
' the preprocessor provides GTDS with p (t_), the average of the uplink and down- !

link propagation distances. The value p (t_) is generated by multiplying the •
observed round trip propagation delay by c/2. The preprocessor also provides
t_ by m,_king the appropriate modifications to the raw time tag for GRARR and
ATSR data.

!

For the greatest accuracy, the expected value of the range should be calculated
_,_ ' by determining the uplink and downlink path of the signal as defined in Equation

(7-_7). This method requires an iterative process to determine the upllnk and :

downIink light time delays. A second, less accurate, method is to approximate _!
the range by ca',.culating the instantaneous range at the spacecraft turnaround
time. The iterative method is used to calculate the expected range for USB,
C-Band, and ATSR, while the instantaneous method is used for VHF GRARR. _

7.2.3.2.1 Iterative Method for Expected Range ,

The expected value of p (te) is computed from ephemeris information and station
;, coordinates using the following equation

7-12

REPRODUCIBILITYOF TI]]t i !•,, ORIGINAL PAO_ _ ]i_

]9760]7203-309



• _ .... ' ........ I[I II I IIIII I I """ " ......... _ -_R-_"_Pi '

I,

O For simplicity, this equation is presented in an inertial reference frame, where

-rv _ spacecraft inertial position vector

r-"T _ transmitting site inertial position vector

r'-__ receiving site inertial position vector

t T _ time at which the measured signal left the ground transmitter

t v _, time at which the measured signal was received and retransmitted
by the spacecraft. The assumption of inst_,ntaneous turnaround is
used; :he constant bias in the observed rs_ge caused by the space-
craft electronic delay is accounted for P,s a measurement error else-
where in GTDS.

ts ~ time tag of the reduced observed range (thatis, the time at which the
measured signal arrived at _v ground receiver).

The algorithm used !n GTDS to compute p(tR) proceeds as follows:

1. Calculate YR(tR)

e 2. CalcuDte iteratively the downlink propagation distance /0d (tR) using the
following equations

(a) Pd(tR) = IT(t,) - 7R(tR)I

(b) 8d(te) = Pd(tR)/C (7-29)

(c) tv=t-s d(tR)

The iteration process is initiated by assuming that t v = ts, and is termi-
minated when successive values of _d (tR) agree to within tO"s seconds.

3. Calculate iteratively the uplink propagation distance _'u '_ts) using the
following equations

(a) Pu(tR)= iT(t,) -  T(tT)I

(h) au(ts) = Pu(ts)/c {7,.30)

(c) tT = t v - _u(tlt)

7-13
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_r_or_ is initiated by asFun_J._g that 8u (t) = 8d(t_), and is termJ,- _._ ',i:
_.ed_vhe:__uccessive vab-vs of °u (t_) agree to within 10_s second_.., -

_ _.... ,*0_'::_ -nggeo_.etrically exact equation is used to comp-_e the ex- _

-_'. p_?ta_ V_e of the rlmge p (t_) for the USB, C-Band _d ATSR systems. '_

,,: = ' ":_ --".: -," p(tR) = _Pu(tR)+ Pd(tR)]/2 (':-31) ";.

' _ " °_ Instavlaneous Method for Expected Range

;_- Range ds_a produced by the G'HARR-VHF system is less accurate than that pro- "
_ " _-
._ ' duced by the othe- tracking systems; therefore, it does not warrant the application '_

of the tterative solution described above. Instead, the following more efficient ' ',

algorithm is used to determine an instantaneous approximation for/_ (t_) using
GRARR range dam

. _' p(tR) = IL(t,)-TT(t,)l = +
:; , (7-32)

_-. where

"i t v .- t_ - ,_(t_)/e

and Ftt is the spacecraft position vector in loca! *,angent plane coordinates. _.

2

7.2._.2.3 R_a_ge Partial Derivatives ".,-

:. The partial derivatives of the expected, ange (Equation (7-28)1 in inertial coordt- ..::

,-\._ nates (USB system) arc ,_

_0(tR) _ I _d [._ (tv) -_ (tT) ] :

_Tv(tv ) 2PuPd (7-33) "

4-Pu [?T(tv) " "rT(tR)] } ,?_

= 0 (7-341

i I _'2
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If it is assumed that p_ = Pd = p(t_), Equation (7-33) reduces to _

3

?P(tR) 1 {2-Fv_(tv) _ [_:I(tT ) + "F_(tR)] } (7-35) :_

8_'v(t ) 2p(tR) ,'_i:

The partial derivatives of _.heexpected range in local tangent plane coordinates
(for the remaining system_) are _-

_P(tR) = rTt (tv) (7-36) .*

o¥_t(t , ) P(tR) _ "
q

3

3/_(t_) (7-37) ;-.=0

7.2.3.3 Range Rate (GRARR, ATSR, USB) i /_'°
41

., The range rate of _ sp_-.ecra_t is determined by measuring the Doppler shift

_ of a signal resulting from the relative mot,ion between the station and the space- _ ?

cr_t. This can be done either by measuring the time required to count a fixed _ !

number of Doppler-plus-bias cycles, as with G1RARRand ATS1R, or by counting 1 _'the Doppler-plus-bias cycles over a fixed time interval, as with USB For all :

_' tracking systems, the preprocessor converts the raw Doppler information 1

I transmitted from the stations to range rate and a time tag.

There are three modes of calculating the expected value of the range rate for _ _ -_

I i

\ each of these tracking systems. In the first me_hod, the range rate is obtained :.
by computing the time difference quotient of ranges calculated at the beginnb_'

I and at the end of the Doppler count interval, lteratively correcting for the light ,time delays. The second method uses the instantaneous ranges at the beginning _"
and at the end of the count interval, with no corrections for the light time d_lays.
The third and least accurate method i_ to calculate an instantaneous range r_te
at the midpoint of the Doppler count interval as seen at the spacecraft. The first
methodisusedtocomputetheexpectedvalueoftherangerateforthe USB sys- .r_..
tem, while the other two methods are used (optionally) for the GRARR and ATSR

systems, i ?"_."
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"_" _.. I ''- 7.2.3.3.1 Iterative Range Difference Method

: The modelkng of the expected value of the range rate which is most precise is to >
difference the average range at the beginning and end o_ the count interw.1 as -:

i shown below {Reference 1).

• e _

_. [Ou(tR) + Pd(tR )] - [Pu(tR - AtRR) + Pd(tR - AtRR)] (7-38)

¢_i . P(tR) = 2AtRI1 ":t

:_ where
_- ,_:

Pu(tR) _- up]ink propagation path of a signal arriving at the receiver at tR
"i

k

. ,Od(tR)_ downlink propagation path of a _ignal arriving at the receiver at t R

; '-1 AtRR _ Ooppler count time interval ;_

! T:;e calculations for these up]ink and down]ink ranges are iteratively corrected :
_. for the light time delay in exactly the same manner as the expected ranges _

modeled in Section 7.2.3.2.1. This method is used for USB measurements where <J

t__ time tag on the observed data is t_ (corresponding to the end of the count
interval) and the count interval AtRR corresponds to the sample interval. This f.__ :,
_aethod is accurate for both two-way and three-way Doppler measurements using

the USB system. Two-way Doppler measurements are obtmned when the trm_s-

mitting and receiving antennas are the same, while three-way Doppler measure-

: ments are obtained when the _ransmitting and receivivg ante,_.,has are different.
?

" The range-rate partial derivatives with respect to the epoch state elements R and "'i
" R are computed most efficiently by using the algorithms for the range partial

derivatives '_

aP(tz) _ _R _P' (7-39) :

?P(t R) ?P(t R - AtRR ) _'_

?R AtRR
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A Less accuratv but. mor£ efficient range difference formulation is available in

GTDS for GRARR and ATSR. It is assumed in this model that propagation delays
are negligible compared with the Doppler count time interval. The resulting

equation is i

/_ _ p(t v + Ate) - P(tv) = I'_-,_(tv Tat_)l - I_,,(tv)l (7-41)
At]m Atp.q

-- F

The two range vectors rlt (t v +Atlu¢ ) and r,t (tv) are computed in the same manner Ias those for the range computations (Section 7.2.3.2.2). In order to use this

method in GTDS, the preprocessor must provide tR, the time of the received
signal at the beginning of the Doppler count interval, and A tp,, the count interval.
The partial derivatives of _ with. respect to local tangent c_rdinates are

a,_ _ 1 _ "F_t(tv + Attar) (7-42) _ '

,_ a'_It atPa Ll_,t(%+at_)l tT,,(%)Ij

a,_ _ 0 (7-43)

_'Ftt

7.2.3.3.3 Average Range Rate

A third method, which i_ the least accurate but most efficient, calculates the _

instantaneous range rate at the midpoint of the Doppler count interval as see:, at
the spacecraft. This value is used to approximate the average range rate over

the uplink and downlink paths, and is therefore denoted Pavg " It is computed as

_lt(tv)'_,t(t v)

P, vg - (7-44)
I_,,(%)1

The position and velocity vectors are expressed in station-centered local tangent
plane coordinates evaluated at the vehicle turnaround time t .

V

7-17

!

1976017203-314



_ ; ) ?

;_ This method is used for the GRABR and ATSR range-rate models. When this
method isused thepreprocessormodifiesthetime tagon the GRARR data accord-

'_ ingto therelationship

It(t )[ (7-45) =
t =tR+ 2 e

: _e partial derivatives of _,,,,g with respect to local tangent plane coordinates
:. are

?

"_ ?-fl t P t - 7

:; ?P.,x _ "flt (7-47) :

: ?rl t

: q i , /g'i

: 7.3 SATELLITE-TO-SATELLITE TRACKING (SST) MODEL

._ The formulation is pre_euted in this sectio_ for tbe satellite-to-satellite range .:

sum and range sum rate (Doppler) model. Par.ial derivatives of the range sum

and range sum rate models are developed with respect to dynamical parameters,
: such as the epoch state vectors, for use in the statistical estimation process. It
-• is assumed that the tracking is accomplished by the modified ATSB system and

thatthe relaysatelliteisin a near-synchronousorbit. _

i

"\'_-• i 7.3.i Introduction ', '-

:_ i Th,,; ApplicationsTechnologySatellite-6(ATS-6) isan advanced synchronous _!
orbit communication satellite. It is the first satellite in the ATS series whichi
does notemploy spinstabilization.This feature,coupledw_than onboarddigital
computer, enables ATS-6 to function as a relay satellite in a sate!IRe tracking

i network,trackingothersatellitessuch _.sNimbus-F, GEOS-C, and theApollo-
Soyuz Test Project(ASTP). The ATS-6 satelliteincludesa multi-frequency ,.*
transpondersystem containingsixreceiversand ninetransmitterscapableof

. operatingon about17 frequencies.A key featureofthesetranspondersfor
sateUite-to-satelltte tracking (SST) is the maintenance of coherence of the phase
relationshipsbetween variousradiofrequencysignals.The range sum and
Doppler measurements are dependent on phase measurements of the returning

@
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I
O signals, and as su_'h are sensitive to any phase delay originating in the trans- I

mission equipment. Since no onboard frequency source is absolutely accurate,
signal coherence is maintained in order to avoid introducing any additional bias
into these two measurements. Angle measurements, on the other hand, are not
affected by coherence.

The range and Doppler measurements are functions of the positions and velocities
of the ground transmitter, the relay satellite, and the target (ground transponder
or satellite). The same techniques can also be used to make range and Doppler
measurements for the relay satellite alone.

Three main tracking modes are considered: The coherent mode, the phase-locked
loop (P_L) mode, _d the crystal (XTAL) mode. The relay-only tracking mode
is referred tG as the coherent mode, even though all of the re_ay modes are
coherent. The phase- locked loop mode is the relay mode used to track phase-

locked loop transponders, such as GEOS and ASTP. The _rystal mode is used
to track crystal oscillator transponders, such as Nimbus-F. A detailed descrip-

tion of these tracking modes can be found in Reference 2.

_he ground transmitter broadcasts two uplink C-Ban_ tones, a pilot tone and a
carrier tone. T'_ carrier tone is modulated by the range tones and is the signal
used to genera_ the Doppler data. There are three uplink pilot frequency options:

5950, 6150, and G,_50 MHz. The carrier frequency can be varied to lock the
target transponder circuits onto the signal. The S-Band frequency which th_ relay
satellite transmits to the target is determined by the difference between the pilot
and carrier frequencies. When switching from one uplink option to another,
both frequencies are shifted so as to keep the frequency difference constant.
The two uplink signals are generated by a set of two fixed and two variable
frequency synthesizers, along with a frequency multiplier and adders.

The measurement geometry is illustrated in Figure 7-1. The transmitting sta-

tion transmits a signal at time to which is received by the relay satellite at t s
and transmitted :o the target satellite at t s +/Wz, where Ar s is the transponder
time delay. The target satellite receives the signal at t 2 and transmits it back
to the relay satellite at t2 + A_2. The relay satellite receives the signal at t_
and, after a transponder delay of/Wj, sends it back to the ground station, which
receives it a_ %. The ground station records the data and tags it with the UTC
time tag tR. The range sum measurement is the time that an RF signal takes t_
traverse the f_,_r-lcgged path from the transmitter to the relay satellite, to the
target, back to the relay satellite, and then to the transmitter. Xnthe coherent
tracking mode (relay only) the range sum observation is the light time for the two
legs from the transmitter to the relay sat.ellite and back to the transmitter.
_he range sum measurement is accomplished through sidetone ranging techniques.

7-19
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_:. Figure7-I. SST Tracking Geometry I "

\ t
!_"_ The Doppler measurements are a functionof a two-component signal.The first

" component origiliates from the transmitter at to, follows the four-leg path, and _,

isfrequencyshiftedby the motion ofboththe relaysatelliteand thetarget.The
second component originatesattheground transmitteratt$,travelstothe relay

{ satellite,where itis mixed withthe signalarrivingatts from thetarget,and is :'
: rebroadcasttothetransmitter,which receivesitatt4. The lattercomponent is

frequencyshiftedonlyby the motion oftherelaysatellite.The incoming carrier _)
< signalisconvertedintoa Doppler-plus-biassignalwhich istheinputtoan N-cycle , ,, ,-

counter.
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7.3.2 Light Time Modeling

In the formulation of the modeling procedures used in the computation of the range
and range-rate measurements, an inertial reference frame was selected since
most orbit integrators use an inertial frame and less computation is required
to transform a single station location than to transform two satellite state vectors.
An inertial frame also makes it unnecessary to consider any rotational effects

on the radar signal. All signal paths are straight lines traversed at a constant
speed c, except as affected by atmospheric refraction. All of the internal calcu-
lations are carried out in terms of time, i.e., the light time for the range and
the time required for a given number of cycles of the Doppler frequency to be
counted. The light time calculations are performed by means of a backward
tracing of the light path (see Figure 7-1). The first step is to compute the trans-

mitter location at time t_. Next, the state vectors of the relay satellite at time
t3, the target at time t 2, tl:e relay s_teHite at time t 1, and the transmitter at
time to are solved for successively, using an iterative procedure. For Doppler
or coherent mode aata, the location of the transmitter at ts is also determined.
If a forward solution ,vere used, i_ would begin a_ t o and solve for the appropriate

state vectors at t t , t 2, t_, and t 4 in succession. The advantage of a forward
method is that the Doppler-shifted carrier frequency is known for each leg and the
transponder delay can be calculated, giving the exact time of retransmission.
However, for the C-Band and S-Band frequency ranges involved in the ATSR

O satellite-to-sstellite system, the transponder delays are virtually constant and
sufficiently small that the motion of the relay satellite and the target during the
delay can be ignored in the light time solution. Since the transmitter location at

ts is a function of the relay satellite orbit and the coordinates of the transmitter
at t4 , it can be solved for most efficiently using the backward trac!ng method.
Large ambiguities in the range measurements and Doppler measurements can be
resolved using either method, since the high resolution correction can be derived
from any solution which is in the neighborhood of the true time. The most im-
portant reason for favoring the backward solution is the simplicity of the calcula-
tion of the Doppler count interval.

Since the Doppler count is made over the time interval between two positive-
directed zero crossings of the received downlink (Doppler plus bias) signal, it
is more convenient to trace the light path backward from the two known reception
times. As the observation is time tagged within 10 -s seconds of the beginning of

the Doppler count, the first of these reception times is set equal to the time tag.

7.3.3 The Range Observation

The range observation measures the phase shift in the range tone corresponding
to the time required for a specified phase to travel from the transmitter to the

O 7-21
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_- relay satellite, to the target, back to the relay satellite, and then back to the sta- " :/

tion (for the co:.lerent mode the path is simply from the transmitter to the relay
" satellite and back). The range tones are transmitted as a modulation on the :_

carrier signal; they return medulatcd on the carrier (or, in the crystal mode, on
": _ the subcarrier). In practice, the time delay is measured from the zero phase of

;, a 500 kHz, 100 kHz, or 20 kHz transmitted range tone to the next zero phase _
._ in the received signal, which gives the rouud trip time minus a whole number of
_. range-tone cycles. This ambiguity is partiaily accounted for through use of low- '_

" frequency tones, down to a minimum of 8 Hz. In effect, the signal which stops ,_-
the timing clock is disabled until the return of the zero phase of the lowest fre-

> quency range tone which was transmitted simultaneously with the high-frequency
tone. For satellites at near-synchronous altitudes, an ambiguity still remains "

in the number of 8 Hz cycles which should be added to the range time; this am-

biguity must be resolved in the orbit determination program based on an a priori
estimate of the orbit. The total range of the signal propagation path is

PL = [_1(tl) -- r's(t0 )[ + ['r2(t2 ) " _l(tl + A_'I)I _

+ [Tl(t3) - "r'2(t2 + A'2)[ + IYs(t4) "_l(t3 �A_3)[(7-48) ,

for fotu'-way ranging, and j/

: PS = I'fs(ts ) - _1(t-_)] + I'Fs(t4 ) - "F1(t_+ A'_)[ 17-49) _ ;

• for two-way ranging (used for coherent mode tracking only), where !j_

;. T"z ",, inertial position vector of the relay satellite :

;. T2 _ inertial position vector of the target satellite ";

":\ "fs inertial position vector of the ground station _

" PL "_ four-leg round trip range

Ps _ two-leg round trip range

L_ ^ transponder delay during first pass through the relay satellite ';

,_ _r 2 "_ transponder delay at the target satellite _,

/_ "_ transponder delay during second pass through the relay satellite

2

•_" 0
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i From Equation (7-45) the four-way signal propagation time is

At R PL (7-50)=--c + AtAI + AtA4 + A_I + A_'2 + A_3

where

AtA1 _ atmospheric delay during leg 1

At^4 _ atmospheric delay during leg 4

r._- vacuum speed of light

The role of the target may be filled by a ground transponder, in which case there i

al _ two additional atmospheric delays
,

AtA2 _ atmospheric delay during leg 2

~ LAtA3 atmospheric delay during leg 3

and Equation17-50)becomes -L,'/-!
?

O "
PL (7-51) _

AtR =--c+ AtAi + AtA2 + AtA3 + AtA4 @ ATI @ A'r2% AI"3 +

However, the atmospheric delays, which are of the same order as the uncertainties ::.
in the system biases, are not included in the GTDS satellite-to-satellite tracking

implementation, reducing Equations (7-50) and (7-51) to ,_

_L (7-52) , '
AtR =--+A-r I +Av"1 +A_ 3c

The satellite transponder time delays are functions of the frequency of the signal ,,"
received by the trmlsponder, i.e.,

l = fl(ui) ,.

A'r 2 = f2(V2) (7-53) , -_.

r

A'r3 = fl(Ua) i

7

t '
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The functions fl and f2 are determined by bench calibration of the individual L-_
?

transponders prior to the launch of each satellite, and are entered in GTDS as _

tablee of trans._onder delay versus frequency. Delays for intermediate frequencies °

are then obtained by interpolation. In the absence of tables, a nominal (default)
constant delay can be used.

7.3.3.1 Range Sum Calculation

The actual observations are not corrected for tcansponder delays in the pre-
processor since Doppler corrections to the frequency-dependent transponder
delays are not available until the ground transmitter-to-relay satellite leg has
been solved. Thus, the transponder delay is added to the computed observation
at the end of the light time solution. This does not invalidate the light time
solution itself, however, because during a typical one-microsecond transponder
delay a satellite will only have traveled a distance of the order of a few milli-
meters. The light time for each transmission leg is (neglecting atmospheric

At1 = I_'x(tl) - _r-s(to)I j,'

delays)

C

1: At 2 = I'r2(t2) - "_'l(tl + ATI)I
C

! (7-54)

I-_1(t3)- "r2(t2 + _7"2)1 . :
At 3 = c

p

l'_s(t4)- _'1(t3+ Z_-3)l
At 4 c

For Doppler or coherent mode measurements, a fifth leg is required, i.e.,

I_s(ts) - "_s(t 3)1 (7-55)
At 5 = C

• @
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J Each leg of the light path is solved for using the following algorithm:

(I) Assume that t3 = t 4, i.e., that At 4 = 0, and calculate the state of the
receiving station and the relay satellite at t 4.

(2) Calculate the time required for light to traverse the path rs (t4) - F1(t4) I

I'_s(t4) - T_(t,)l (7-56)
At 4 -- C

(3) Estimate t 3 as t 4 -At 4 and sob,e for the state of the relay satellite at
this new estimate of t3 .

(4) Refine the estim,'_te of t 3 using the formula

_., = t3 +fCl (t4-t3)-IYs(t4) -fl(t3)l"_ (7-57)ITs(t4) "_l(t3)l

This fornmla is derived from the Newton-Raphson method, which con-
O verges quadratically.

(5) Repeat steps 3 and 4 until convergence is obtained.

(6) Proceed in the same manner to determine At3,A_ 2, andA t 1.

The desired observables are modeled from the exact geometry calculated in

this fashion, t

7.3.3.2 Partial Derivatives of the Range Observation

The range observation, without corrections for transponder delays and atmospheric
delays, can be written as

'EAte - _- ]Tx(t_) - Ts(to)] + IT2(t_) -_(t_)l
e

(7-58)

+ 171(t3) - _2(t2)1 r'-s(t 4) - 7"1(t3)11
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where ,, .;

j_

r'-s _ ground station position vector :

7"1 _ relay satellite position vector
/

72 _" target position vector

The partial derivatives of the range observation with respect to the target posi-
tion and velocity vectors are then _

E_At, ..1 7",(5!-'*,(t,) 7",(t_- _ (0_ O_,) 17-s9)
_7",(%)_ U_) 7",(,,)II_=(%) _

?Ate - 0 (7-60)

?_2(t2)

where LT2 and TJ3 are unit vectors directed along legs 2 and 3, respectively. "_'"
Similarly, the partial derivatives of the range observation with respect to the
relay satellite position and velocity vectors are ; ... ' '

,2"

• _Ate _ 1 (01 - 02 + 03 - 04) 1"I-61) ,-
, ,B7"1 c ;

i; 8AtR _ .;:
: i - 0 (7-62)

], where 01 and U4 are unitvectorsdirectedalonglegsI and 4, respectively. _i!
d

_ For differentiationpurposes,rl(tl)and rl(t3)have been replacedby r_ which
representsa mean positionvectorlyingbetween'_l(ti)and rl(t31;thevariations

', ofthisme.anvectorcloselyapproximatethoseofYI(t_)and Y (%). Similarly, ..:
_ "Fz(t_)and_ (t3)have been replacedwith'_. , '_ '

• The part_.alderivativeswithrespectto therelaysatellitecoordinatesor with "

respecttotargetsatellitecoordinatesare relatedtothe epoch coordinatesvia

7-26

t 1
"- ,J"

1976017203-323



1 l
¢

the appropriate state transition matrix. This matrix can be used to link the epoch

time with any convenient time within the observation time span; however, for }
practical purposes, it can be ccnsidered constant for the duration of the observa- '
tion, which is only about half a second.

Partial derivatives with respect to the coordinates of the ground station or a _ _=
target transponder located on the ground are chained back to earth-fixed geodetic
coordinates, using Equation (7-10). The partial derivatives of the range observa- /
tion with respect to station coordinates at the time of observation are .

_At_ _ 1 (04 _ 01 ) (7-63) !
aT s c

where _s (to) and rs It4 ) have been replaced with a mean station location vector rs" '

In the coherent mode, the second and third legs are missing from the expression _.

for AtR, SO that ,;

aAtR _ 1 (0s _ U4) (7-64) "DJ ,i:

?/_tR - ?AtR 1 (04 -US) (7-65) i
?Ys aT, c _,,

where I_s is a unit vector directed _long leg 5.
5

\ 7.3.4 The Doppler Observation ',

The Doppler observation involves the counting of a number cf cycles of _ fre- _;_
quency returned trom the relay satellite to oetermine its Doppler shift du, _to the
motion of the relay and target satellite_ relative to the ground station and to one
anothcr. The actual frequency counting can be done by one of two methods, the
destruct mode or the nondestruct mode-,.

In the destruct mode, the counter input frequency _, is the sum of a bias fre-

quency I_b plus one-fifth Lhe Doppler frequency. This cotmter input frequency,
nominally 0.1 MHz, is counted up to a fixed number of cycles N The time re-

qulred to count these N O cycles is measured by C0, the number o_ 100 MHz cycles _

$ ,.. ] i"
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_._ counted in the s:une time period. The counter is then reset to zer% giving rise
to the nomenclature destruct mode. The observation is the average Doppler

_ frequency _d, which is related to the average value _ of the counter input
! frequency over the time interval by

_'d = 5(_i, - Ub) = 5 - _ (7-66)

In the nondestr_ct mode, the counter input frequency is the sum of a bias frequency
plus 100 times the Doppler frequency. !t is nominally 20 MHz, and is to be counted

, over a fixed time interval/_ t_. The resulting count NO is cumulative, since the
:_ counte_" is not reset to zero between measurements (hence _e name nondestruct).

_ The time interval AtRR over which each count is taken is _he s_me as the time
between measurements. The measurement is the cumulative count N o. The aver-

:/ age value of the Doppie,. frequency can he calculated from the raw measurement
_ • v_ the relationship

I00 I00 /

where AN is the increase in the N-cotmt since _he previous measurement, after (J)
J accounting for any counter overflows.
!:

7.3.4.1 Formulation of the Dorpler Observation •

! In all three tracking mc_ies considered, the counter input frequency _,, can be
expressed in the fo_ m _,

' \'K

;'_n= u_ [Act_a_/_ + B%_ - C] (7-68) _

: where _ isthe system referencefrequency,thec_'sand _'s are the Doppler
factorsforindividualtransmissionlegs,and the coefficientsA, B, a,,:iC are1

constantswhich depend onlyon thetrackingmode co-,_tlngmetb.-._and thefre-
quency optionsused (A = 0 forthe coherentmode). H the Lorentzfactor(which

, is approximately1 + 10"12) affectingthetintingof clerksmoving withthetracking
st_ion is assumed to be u_i.ty, t_e Doppler-factor products in Equation (7-68) ,
can be e_pr_.ssed as

0"10t2_l_)2 = 1 -_/_L (7-69a)c
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0 and

a3o.2 = 1 ---Ps (7-6ob) iC

where PL is the time rate of change of the four-leg round trip range (ground
_'.aticn-to-relay-to-target-to-relay-to-ground station) and Ps is the time rate
of change of the two-leg round trip range (ground station-to-relay-to-ground

station). These relationships are derived in d_..ail in Reference 2. I

The average Doppler fr6quency can then be expre_sed as 1 _!
!

_d - k(_. - _) --t,_a - +_ .... k_ 1
_a b

=k a(A+B-C)-v a " +B -ku b .7-70)c

=-ku R (APL+B-_)--O °
where k is 5 or 0.01, depet _iing on whether the desex-act or nondestru_ mode Is i -

being used, and 7_ Is the 5 MHz system reference frequency. For a particular _
tracking configuration, the bias tern. (A + B - C) and the coefficients A and B

can be determined in advance, _o that only the range rates PL and Ps need to
,_e modeled for observation.

The count obtained over a time _nterval AtRR in a destruct mode Doppler count
\ is

tR+AtRR

N = vindt

= vbAt n - -- ,'Ldt -.-_ /_sdt (7-71)C

t t R

= ;:bAtRl_ -_- (.ld_PL + _/3p._)
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i where Apt and Aps are the changes in the four-leg and two-leg round trip .L!
ranges, respectively, during the time AtrR. The same equation applies in the

i nondestruct mode. These relationships pe,'mit modeling of the Doppler meas-
urement using a backward light-time sol.Ltion algorithm. For either destruct
or nondestruct data, a light-time solution is performed at the time tag, yielding

values of PL and Ps" A second light-time solution is performed at the time tag
plus At_R for the destruct mode or at the time tag minus _t_ for the nonde-

struct mode. Values for APL and Aps are obtained from these solutions, and
a value of AN is computed. The average Doppler frequency is set equal to

_ . klAN/At_ - % 1. Iterative calculations may be performed in the destruct mode,
using a Newton-Raphson method with Atsa as the independent variable, until
the calculated AN is _ithin a specified margin of the preset count N. Corrections,_e

such as transponder delays, are not required, since only the differences are

_ used in the Doppler light-time solutions.

i-

7.3.4.2 Partial Derivatives of the Doppler Measurement

" , Since the dimension of the Doppler measurement varies according to whether

: the destruct or nondestruct mode is being used, and since preprocessing of the /,_
; data will often change the dimensions of the measured obser¢.qtions, GTDS ._

converts all of the observations and expresses the partial derivatives in terms

_ of the average Doppler frequency _d, i.e., _ }

30 ?_d, c (7-72)

In this equation, g is the total state vector, which includes both the position and '
velocity vectors. When At is modeled in the destruct mode _ _

p

_, N O _.
\ At - _

_d

'_ _b +,'_-

:2

and

!"
t

, bat -N O ?_d - (At)2 ?_d 17-74)

_ (S _ ) ?S'o SNo ?So
5 + _,_

/

" where _'o is the state vector at epoch.
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In the nondestruct mode

AN = Ato(100_ d + Vb) (7-75)

and



• i i ,' I" r :-

_C ;'

where p represehts.DL or p s, and ¢(t,t,)isthestatetransitionmatrix (see ,-- :
Section 6.5) from epoch time to to time t_ As indicated in Section 7.3.3, the / "

: f
,_ partial derivatives ol the range with respect to any of the velocity components ,,

: are zero. Thus, Equation(7-79)reducesto

_' _o _t_ L_r(t+Ate) -_¥(t'--'_,.t,to
,]

where _ represents a modified state transition matzix, consisting of the first '
;; three rows of the state transition matrix, i.e.,

i-

: _(t, to)_ ____?7(t) (7-81)
_: 8g(t o ) :,;

where ¥ representsthepositionvectoroftherelaysatellite,thetargetsa_Plite,
/- ;I

_ or the ground station. "

,L././]The partial derivatives of the average range rates/_L andes ,.;-ith respect to ,

the relavsatellitestateatepoch can be expressed as _ _ ._
x

- I_ ,_, (t + AtRR, to) B¥1(t) ¢1 (t, to)?gl(t0) AtRR +AtRR) "" _

i

_ 1 _0 i - O2 + 03 - O4)lt ;_1(t+ AtRR, to) 17-89.) '_
_tRR +AtRR _ .

%

- (Cs - O2 + 0 3 - O4)lt Ss(t, to?,) :.

8bs _ 1 {(Os O_)i Ss(t + At_, to) "
?_s(to ) AtR R - t: ,_tRR

17-83) l":.:

- (Os - 04)It ¢1(t_to 2
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i 6 The partial derivatives with respect to the target satellite state are given by

m

ag:z(to) AtRR t

and

?,_s - o 17-85)
?g2(to)

Finally,thepartiaiderivativeswithrespecttotheground stationstateare

m

bPL 1

bSs(to) -AtlZIZ {(I'J4_t'jl)It,AtRR,s(t +AtRR, to)_ (__0Z)J t _s(t ' t0)_ (7-86)

and

J

b/_s 1 ((0¢- Us)! _ (t AtRR: to) (0, US)It Cs(t,to)}_(7-87)
O bSs (t0) - At'RR t+AtRR*S " - -

After the range-rate partial derivatives have been determined, an appropriate
transformation must be applied to obtain the partial derivative of the input measure-
ment. For exan.ple, the partial derivative of the Doppler count interval is given
by

bat - (At)2 b_d (At)2 lJR bPL (7-88)

_'. b_ ° - NO _E° = N0-----_ bW0 + B b_0/

where A, B, and vR are definedin Section7.3.4.1.

The statevectorsof therelayand targetsatellitesmay alsodepend on dynamic
parameters (e.g.,solarradiation,geopotentialcoefficients,etc.)whichare tobe

solvedfor. Ifbothstatevectorshave a common variable,thepartialderivative
isthesum of thetwo independentpartialderivatives.For example,the partial

derivativeof thefour-legaverage range ratewithrespectto a gravitational
constantG is
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BG AtRR aG _G

• 1 J'(bPL( t + AtsR) b'_l(t + AtRR) ""

_. _pL(t + AtRR) 8¥2(t • AtRR)_
_ + _'r2(t + AtRR) _'G" ]

_, (7-89)

:: (SPL(t) 87-l(t) 8pL(t) _ (t)_l

_, " _ 1 [(BPL(t +AtRR)_ _-rl(t +k'tRR) _PL(t) _I(t) ");. , _t_ L\B'_I(t _ AtRR) 8G _Tl(t) bG •

_. + .,°,fL(t + AtRR) 8r'2(t BPL(t) E-F2(t ,

7.4 RADAR ALTIMETER MODEL

GTDS models the satellite's orbital state vector in inertial coordinates, However,

i \ the radar altimeter measures the height of the satellite relative to the actual sea

-' _ surface at the subsatellite point. Thus, the observation modeling must relate the
inertial coordinates to the actual sea surface height. This is accomplished by

expressing both the satellite's position and the sea surface in body-fixed coordi- ,
•, hates Xb, Yb and Zb .

_ 7.4.1 Surface Model

z

The sea surface is primarily determined by the e.rth's gravity potential, which
s

is the sum of the gravitational potential and the potential of the centrifugal force
resulting from the earth's rotation. A particular equipotential surface of the

earth's geopotential field, called a geoid, passes through the mean sea level

surface and is nearly spherical, with flattening at the poles and a pear-shaped bulge
in the south- -n hemisphere. The geoid approximates very closely (within a meter

7-34
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or two) the real sea surface in ocean areas. Small _tatic and dynamic differences
between the instantaneous sea surface and the geoid are caused by currents, tides,
and weather phenomena. Typical magnitudes of these deviations (References 3
and 4) are presented in Table 7-1.

Table 7-1.
Sea Surface - Geoid Deviation Sources

Source Typical Magnitude

Sea swell 1 meter
Wind waves 1 meter -'

Storm surges 1u centimeters
Barotropic depressions 10 centimeters
Currents 1 meter
Tides 1 meter

Since complete information is unavailable for modeling ther.,e small effects, they
are n_lected in the radar altimeter model.

j"
A reference surface is utilized which is conveniently ch._seu to be a rotationally

_j_ symmetric ellipsoid that best fits the geoid in a lea_.t squares sense. The maxi-mum distance between this ellipsoid and the geoid is approximately 100 meters.

This ellipsoidai surface also represents an equipotential surface of the normal
geopotential, which includes (in addition to the point-mass term} even zonal

harmonic coefficients, of which only C_ and C o are significant. As a result, the
sum of the additional terms needed to fully describe the geopotential (i.e., the
disturbing potential} is small (Reference 5).

'\ PO LE

UNDULATION 1

_.x/- REFERENCEELLIPSOID !

EQUATORIAL RADIUS

Figure 7-2. C,eo_.dUndulation
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Figure 7-2 shows an exaggerated cross section of the geoid and the reference -[ '
ellipsoid. The distance measured along the normal to the reference ellipsoid
from point Q to the point P on the geoid is called the geoidal undulation and is
desigvated by U. Expressing the geopotential function _ as the sum of the normal/
geopotential qJN and the disturbing potential _D yields

i
. _b(r, _', )_) --_N(r, _', K) + _(r, _', )_) (7-92)

•: where, from Section 4.3,

_N(r ' _,, _) _ ft +__ pO(sin _,) + 64r r
f

and

r

: +-_r _.ffi, CO_\r/ P°(sin*') (7-94, _...,"

+ P_(sin qS') r,.,_L_n sin _ + C_ cos n_]
nm2 mffil

i

In these equations, r is the geocentric radius, _' is the geocentric latitude, )_

is the longitude, and Re i_ the earth's equatorial radius. _e geopotential function
' (the sum of the normal geopotential and the disturbing potential) differs from the
• gravitational potential in that it includes a term which represents the centrifugal

potential due to the earth's rotation. This term is included iv the second zonal

harmonic coefficient. Furthermore, the Co term in the normal geopotential is

a function of C°, whereas Co and Co are not functionally related in the gravi-
tational potential. Consequently, AC° and AC° are included in Equation (7-94) to
account for these differences.

)

In order to evaluate the magnitude of the geoidal undulations, the geoid of potential
' _o is compared with the reference ellipsoid of the same potential _N (Q) = _o. ,

The normal potential _N (P) at P can be approximated by the linear relationship

i_ _N(P) = _N(Q) + \ ?_/U = _N(Q) - _/(Q) U (7-95)
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_ where T (Q) is normal gravity, i.e., the magnitude of the gradient of the normal
geopotential on the reference ellipsoid at the point Q, where the algebraic sign is
consistent with geodetic convention.

By definition
i

_b(P)= _n(P)+ _D(P) (7-96)

and

_(P) = _o = _N(Q) (7-97)

Substituting Equations (7-96) and (7-97) into Equation (7-95) yields Brun's Formula
(Reference 5) for the geoidal undulation

U - _v(P) (7-98)
T(Q)

The geoidal undulation U is a function of the disturbing potential at the point P

and normal gravityT atthe pointQ. However, frequentlythe coordinatesofthe _, ,,, '_
pointQ are known, butnotthoseofpointP. Inthiscase,evaluationof thedis- _'_

turbingpotential_b_ at Q insteadofP willcause onlya small error in thecalcu- !_lationof U.

A betterapproximationforthedisturbingpotential_D(P)can be obtainedby _ _
correcting the geocentric radius r by the undulation U, calculated as described _ }

above. This valuecan thenbe used in Equation(7-98)to obtaina bettervalue _

of U. Standard (normal) gravity, which is the gradient of the normal potential i

_N' is derived as a function of geodetic latitude and equatorial gravity in
Reference 3, yielding ;

7 = _',(I - f2 sin q_+ f4 s in4 _) (7-99) ._

where _

_ _ 15 m2 (7-100a) _!1 f2 26 fm +
f2 = - f +{-m )H"_"

I f2 5 (7-100b) '
f4 = --2 + _ fm ""

_2R e
3 m2 . (7-i00c)m4 - ,,_
2 7,
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and . l

_'e _" normal equatorial gravity, which is 978.049 cm/sec 2 for the Inter-
' national Ellipsoid '.

, -L

"_ earth's rotation rate = 0.72921151 × 10 -4 rad/sec , :

_ _b _- geodetic latitude

f _- flattening of the reference ellipsoid; f = (a - b)/c, where a and b are _:
_-" the semimajor and semiminor axes, respectively, of the reference

ellipsoid.
7

_ The value of m is obtained iteratively from the expression

_- e 3 m2
,/ m-

_::_ i 7e 2 _-_ (7-101) ,

, "x_ starting from m0 = 0.00344986. /s(.
_ ,_.-

:_ The normal geopotential field and the normal gravity field of the reference

ellipsoid are determined by four constants, usually chosen to be ]
1

_' a _ semimajor axis of the reference ellipsoid

il c _. flattening of the referent" ellipsoid/

" _'e _" equatorial gravity

_,__ _ "" earth's angular speed of rotation.
\

0
The flattening f of the reference ellipsoid of revolution! and the values of C_ for
the sphericalharmonic expansionof thenormal potentialare directlyrelated. ,

Thus, Co can be usedinsteadoff as one ofthe fourconstants.

7.4.2 Measurement Equation

!
Ideally,the radar altimetermeasure theminimum distancefrom the spacecraft

to the sea surface, which is equivalent to the distance from the sea surface to
the spacecraft measured normal to the sea surface. Since the sea surface is

_:_ closelyapproximatedby thegeoid,the geoidisa convenientr_ferencesurface
: for altimetry; however, the present global mathematical models of the geoid are
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not accurate in fine detail. In the remainder of this section, the term geoid will
denote the mathematical model of the geoid represented by means of a spherical
harmonic expansion.

,., POLE
,,. .ITE

.: O

.j
;i

-_.

'i h H

H'
;- ; h'

g'_,:'• SU RFACE ..,/j __}

REFERENCE

_'-;' _. _,_ ELLIPSOID _,

_. //S

:" EQUATORIAL
: RADIUS

; Figure 7-3. Geoid Geometry

The minimum distance from the geoid to the spacecraft is indicated by the l_ne

! '_',,. segment OP in Figure 7-3. Solving for this distance is dtffteult because of the
complicated form of the equations for the geopotential. Therefore, an approxi-

.; motion to the distance H is made by using the length H' of the line segment OP'
along the normal to the reference ellipsoid passing through the spacecraft.

:_ The spacecraft position is assumed to be known in earth-fixed Cartesian coordi-
nates x_, Yb, and zb by transforming from inertial to body-fixed coordinates

:; using the methods of Section 3.3.1. The geocentric latitude _', the longitude X, ,

: and the magnitude rb of the position vector to the spacecraft are given by

_, = tan- 1 _U . (7-=02)

+
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!
1

.h.

t

_= tan-I [__I (7-103)
md ..

: rb = /-4 + Yb2 + z_ (7-104) ] •

The geodetic latitude _ and altitude h' to the subsatellite point S' on the reference ;i
- - ellipsoid are obtained from Section 3.3.6 as

-1 _:"- ' Zb [I N (2f f2) (7-105)
_: tan_-_ (N +h')

where 'i

!! "": N - (7-106) ,?
, _/i - (2f - f2) sin 2 _ :-_

' j;
and ._// _

h' = - N (7-107) :--- _,"
cos ';:

J

Equations (7-105), (7-106), and (7-107) must be solved iteratively.

The geoid undulation U' at S' is obtained from Brun's Equation, Equation (7-98), ._
(where _D (P) is given in Equation (7-94) and/IS') is given in Equation (7-99)) i_
and, if necessary, using the procedure described fn Section 7.4.1 to obtain the "_

\ required precision. 'i
?"

Therefore, the resulting approximation for H is _:

H' h' u' (7-108) _,,

_ 7.4.3 Partial Derivatives

j Partial derivatives of the observation are determined by transforming the observa- i

_ tion partial derivatives with respect to body-fixed coordinates to partial deriva- _:
rives with respect to inertial Cartesian coordinates as described in Section 7.2.2.

The partialderivativeofH withrespectto'_ istransformedto a partialderiva- ,_

ttve with respect to R as follows 4 ii_

i 7-40 _-
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I (7-1o9)

The partial derivative of H in Equation (7-109) involves numerous higher order
terms because of the dependence of the location of pv (Figure 7-3) on the r::_ula- i

tion Uv and the coordinates xu, Ye, a.ld zb . However, these effects can be neglected
to first order. The partial derivative of H with respect to _b is therefore approxi-
mated as

_H _ _h' _ _,T (7-110)

h'
where

Ixl
%

h'= Yb _" (7 111) /J

b Z

_J Equation (7-110)is exact a spb_rical geoid. I

(

7.5 VERY LONG BASELINE INTERFEROME'GER (VLBI) MODEL
)

The Very Long _aseline Interferometer (VLBI) system records signals trans-

mitted by a satellite, along with timing signals from a local atomic clock, at ti_"
,\ two or more ground stations. The presence at each statio.l of accurate atomic

" clocks, which can be coordinated by comparison with p_rtable clocks dispatched
between statiohS, means that the signals from the satellite recorded at each
station can be time correlated with great precision. 2_e ground stations "

measure phase differences between simultaneously received signals transmitted
by the spacecraft. The observables are a phase difference time interval r snd

its time derivative 4. The time difference r is the difference in the spacecraft

range as measured from each of the ground stations on a given baseline, divided
by the speed of ligh_ c. Ne_iecting atmospheric effects, the time difference
between reception of the same wavefront or phase at the first and second stations
is ]

, ,{ }: -rOh - P_): T I_x,_(t)l - IT_,_ft._ _')l (7-112)
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b- where Pl and P2 are the ranges from the _irst and second statto,_ to the satellite, _
respectively. The range vectors F1_ and rt t 2 are evaluated tn the local tangent
plane system c_,:'.tere,_ ,t the firr.t -_:-_o_eond stations, respectively. An it_ratlv¢

procedure is required to determine r, since t,' _ actual light time be' : .'. the
satellite and the station is not kno_-,', initiaUv. The iteration is initiated oy assum-

ing that _ is zero on the right-hand e_de of _:quation (7-112).

The time-rate (Doppler) difference _ is _e difference in spacecr_t r_uge rate
as measured from each station and di,_ded by c, i.e.,

1 1tl (t) " _ltl(t -rlt2(t �I')• r'lt2(t + 1" (7-113)

The partial derivatives o_ 1" and ¢ with respect to the epoch state vector components
and dynamic model parar,_eters are _.ven by

a.._T= 1 ._aP1(t),h'rlt(t)_ a_(t)

_ c _it(t ) _R(t) _ (7-114a)

_P2(t') _rlt(t') aR(t' _ /.s_.

t +_.,, (t') _(t') _-'_--J 'J

?-;- 1 (t)

I �__._...__.

:". _r_t(t) \ hR(t) _ aR(t) 8P / (7-1iIb)

_.

_'r'it2(t') \ aR(t') hP aR(t') _PP /J

where t'= t + 1". *

,_ The partial derivatives _(t)/_i and _R(t)la_ are obtained from solutions to the
variational equations; the partial derivatives _'_lt(t)/aR(t), arz:(t)/dR(t), and

_r_(t)/_R(t)are presented in Section 7.2.2; and the partial derivatives of the

•'j, p's and/3 's with res._ect to their .'espective station-centered loca_ tangent plane
coordinates are given h_ Sections 7.2.3.2 and 7.2.3.3.
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7.6 ATNOSPIIERIC EFFECTS i

All satelliteradartrackingobservationsfrom ground trackingstationsare _,
affectedby theprop_ation characteristicsof electromagneticradiationthrough

tlleearth'sstmo3phere. The be._a_.ng,or refraction,of theray_ means thata .. ,
measurement ,-{the directionofthesignalpropagationattheground does not i
correspondto ,L_,,__dlrcctionoftherelativepositionvectorbetween thespacecraft ._

_.,_ ray bendingalsorequiresthattheinterpretationand thetrackingstation. "" _

of theDoppleL--shff_m_',.surementmust be based on theprojectio_ofthe appro-

priatevelocityalongthe localpropsgationpathdirection,not alongtherelative | !,

positionvector. Sincethelocalpropagationspeed inthe atmosphere is different i

from thevacuum speed,the_.nterpretationoftime-delaymeasurements must _i
account for this effect.

I In principle, the refraction effects may be characterized in terms oi the variable I _

local index of refraction n of the medium through which the signal is propagated.
Itis assumed inthe correctionalgorithm_thatlocallytheatmosphere is spherically :_r

symmetric with respect to the center of the eat_h; therefore, n varies only with _,
the altitude h (measured reAi_ly) at each tracking statio _, However. the n

versus h _rsfii_ is determined as a function of the __tation location and the varia- ,_/_(dons in solar flux. The nature of these deperdencies is discussed in the following
sections, which present the mathematical algorithms characterizing the three basic :_'

refracticn effects considered.
2:

7.6.1 Troposphere Model (References 6 and 7)

The troposphere is the familiar gaseous atmosphere, which extends from the
earth'ssurfaceupward to a sensibh:limitol about30 kilometers. For the ._

microwave frequenciesof interestinspacecrr% tracking,thetroposphereis

essentially a nvndispersive medium, i.e., the index of refraction n is independent t .
ofthefrequencyof thesignaltransmittedthroughit.Withinthisregion,n is ' :

expressed as

n = I + N T (7-115) *'7'_4

where thetroposphericrefractivityNT depends onlyon thethe.'._odynamic
properties of the air. Since temperature and pressure data are not readily

available at altitude, surface data are used to compute the surface refractivity t /_i

N,, and an exponentialdecay withaltitudeis assumed i ' :i

-(h-h_ ) / XT '_
Nz : N,e (7-116)
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where h, and N_ are the altitude and refractivity at the tracldng site, respectively, C_
and HT is the tropospheric scale height, i.e.,t

_ HT = _ NT(h) dh ,

The National Bureau ,, Standards Central Radio Propaga_.ion .T.-_,boratory

_• i (NBS CRPL) giver, values of the scale height for different values of the surface
refractivity. Referen-e 6 stresses the importance of using corresponding v_hes _ _.

i Of HT and N. (Some formulations have fixed H T at a standard value, allow'_
_ only N to vary.)

7.6.2 Ionosphere Models (References 8 through 1_.)
.$

/
_ ' Abo"e the troposphere is another "atmosphere" called the ionosphere, consisting

of ionized particles and extending from about 80 kilometers to beyond 1000
_- kilometers. The index of refraction n is less than 1 in this dispersive medium

_r and it is expressed rigurously in terms of the ionospheric refractivity NI . For "/_

the sign convention chosen, the ionospheric refractivity N I > 0 and

n2 -- 1 - 2Nx 17-117) "

|

The difference from unity is small, and to first order in the refractivity Nx, n
can be written in a form analogous to that for the troposphere .i

• _

n -- 1 - Nx 17-118) !
\

• \\ The refractivity depends on the electron density Ne (in electrons/m 3) and the :
i signal frequency _ (in Hz) according to

40.3 N,
N_ - (7-119) ,

u2 i
I

! i

The electron density prof':le for the ionfJsphere reaches a maximum value N_
at altitudeh_, decayingto zero very rapidlybelow,and very slowlyabove,this

. altitude (Figure 7-4). The exact shape of the profile and t'_e values of N and h
', are highlyvariablefunctionsofgeographicallocation,time ofday,season,and

" sunspot activity. If sufficient ionospheric sounding data are measured (with ._
i

i £,
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ionosonde or a backscattering radar) at a given location arid time, a reasonably __
• ._urate construction can be made of the electron density profile. From Lhese :_
dat_, interpolated to the time and geographic location of interest, the values of

N and h, can be estimated.

I

i

N = N_ e-k5a5

! "' i2000 km = h5

I = N4 e'k4a4

1

1000 km = h4, = N3 e-k3a3

..c h3" = N2 e-k2a2
z I I I 4

.._ -- a21 I I ,_' tU

-r h2. iL...L_.! = N1 e-klal ;
--+-+-"

hl _--i_ I _ =mm -'Y d I \ i
h .,-L -_---I I i_ e _,

$1 I I I
bl I I I I i_

I I = Nm " ',

I I 1 I tl I :_
i J I

d

N5 N4 N3 N2 NI Nm

ELECTRON DENSITY, N
J

o

Figure 7-4. Empirical Worldwide Electron Density Profile
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._ 7.6.2.1 Modified Chapman Profile i._9 _]

- The quantitiesNm and hm defineonlyone pointon theelectrondensityversus
altitudeprofile.Tlleotherpointscan be assumed to lieon a modifiedChapman

-_ profileinthe form (Reference8) ._

. Ne = Nme(1-z-e'Z) (7-120)

L-
q

_ h-h
z - m (7-121)

• H I

=.
where h isthealtitude.andH z isthe ionosphericscaleheight.

'_: SubstitutingthemodifiedChapman profile(Equation(7-120))intoEquation(7-119)
gives

:i 4o.at
. J NI _ e(1-z-e"z) (7-122)

7/2

!

as the altitude variation of the ionospheric refractivity. I
t

It is generally conceded that the modified Chapman profile does not represent I
the best possible normali_ed proi._le. The fixed ratio of the total electron content
above the maximum point to that below tends to be too large, on the average,
compared with the observed diurnal variation. However, the theoretical founda-

tion upon which Chapman based thederivation(Reference9) az_dthe susceptibility

ofthefunctionto treatmentof refractioneffectsiv a closedanalyticalform argue
for it_ continued use.

: In GTDS, the maximum electrondensityN m and itsassociatedaltitudeh m are

determinedas functionsofthetrackingstationlocationand thevariationsin

solarflux.The method ofcharacterizingand determiningthese,,ariablesis
describedinSection7.6.2.3.The ionosphericscaleheightis givenin Reference8
as

Hz =35 [30+ 0.2(h- 200)] (km) (7-]23)
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i 1!7.6.2.2 Empirical Worldwide Profile !

The electron density profile is modeled as consisting of a btparabolic bottomside _

layer-, a parabolic topside layer, and a five-sectioned topside exponential layer, 1 :
as shown in Figure 7-4. This profile is defined by the following equations _i

t
Bottomside )

t

iNI=
\ !

!

Topside t

N x : N m - (Segment B- C) (7-125a)

P

-klal (7-125b)NI = N1e (Segment C-D) •
i S \

NI = N2e -k2a2 (Segmeklt D- E) (7-125c)

; l_i -k3a 3
_'*" NI = N3e (Segment E-F) (7-126d)

-k4a 4
Nx = N4e (Segmer, t F- G) (7-125e)

NI = Nse-ksas (Segment G-H) (7-125f) "

_ where i

"" _ Yt = ay_ ('i-126a) i',
,%

_, "I for foF2 < 10.5 MHz
a = (7-126b)

.1333 (foF2- 10.5) for foF2 > 10.5MHz

b -- h - h (7-126c)
m

a! = h - hI (7-126d)

a 2 = h - h2 (7-126e) '

a3 -" h - h3 (7-126f)
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]_ --J I ____J _ a- J- I lill i

• I: a4 = h - hA (7-126g) ;.._

as = h - hs (7-126h) J

: The empiricalprofileis completelydefinedby theparameters hm, N, and Ym ""

forthebottomsidesegment, and NI, N2, N 3,N4, Ns, kI,k2,k3,k4,ks,hI,h2, i
: h3,h4,and hs forthetopsidesegment. The maximum electrondensitypoint

_: (h, N )is determinedas a functionof thelocationand thevariationsofthesolar
flax as described in Section 7.6.2.3. The parameters hI through h s are defined
as follows

h, = hm+ d 17-127a)

1 (l.0x I0a (7-127b):: h2 = h 1 + _ - hI )

2 (I.0× 103 - hl) 17-127c)h3 = hI +'_

h4 = 1000 km (7-127d) !,-

hs = 2600 kr,, (7-127e) _
?

and d can be dctermined from

2 2 1
d = _/I+ klYt - (7-128)

kI

"_,\ The values cf N1 through N s are determined sequentially for the adjacent lower ,
profile segments so as to maintain continuity of N_ at the segment interfaces

NI= - Nm 17-129a)

,: N2 = NIe"kl(h2" hl ) (7-129b) /
s

.. -k2(h3-h 2)
, N3 = N2e (7-129c)

"k3(h4" h 3 )
- N4 = N3e (7-129d)

Ns = N4e'k4(h$-h4) (7-129e)
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i I I
i -- III11'-- I" I IIII I_ _;The final independent variables for the segmented N x versus h profile are the

maximum elech .,n density Nm, its associated aRitude 1_, the half-thickness of the -_
bottomside layer Ym, and the decay constants k 1 through k s for the five topside
exponential layers, respectively. The method for determining these variables
in GTDS is described in Section 7.6.2.3.

7.6.2.3 Electron Density Profile Parameters

Both the Chapman and the empirical profiles require the maximum electron

density N. and its associated altitude h.. These variables are determined
(References 10 and 12) as functions of the critical frequency of the F2 layer,

f0 F2, and the M-factor, which is the ratio of MUF(3000)F 2 (the highest frequency
usabte for a 3000 kilometer single hop propagation via the F2 layer) t,j the
critical frequency f0 F2, i.e.,

>

h --[1346.92- 526.40x (M-factor) + 59.825x (M- factor)2] •_

(';-13o)
Nm= 1.24 x 10-2 x (foF2) s

4#:

where Nm is in electrons/m 3 , h m is in kilometers, and foF_ is in Hertz. The ._../ _"
critical _requency and the M-factor are functions of location and the variations

O of the solar flux.

The critical frequenc) fo F: and the M-factor (also denoted M(3000)F2), required
for the profile calculation, are computed from monthly U.,k coefficient sets
using equations based on Fourier series expansions and spherical harmonic
mmlysis, which were developed by the Institute for Telecommunication Sciences
(ITS)in Boulder (now NationalOeeanic and Atmospheric Administration- _"

i'

Boulder). t .:

The values of f0F2 and M(3000)F 2 are functions f)(_, _, T) of geodetic latitude
_, longitudu_.,and time T. The f,mction-Q(_, _, T) can be expressedby a

series of products of time-dependent functions D(T) and position-dependent _
geodetic functions G(Ob,)_)

K ;"

'r)=nLD(T),G(¢, = (7-131)

k"0

where K is the cutoff point for the approximate representation of f2; K = 75 when _

= foF2, and K = 48 when _ = M(3000)F 2 , These c_toff points were originally
determined using a Student's t test.

?
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-_ The time-dependent functions can be expanded iv their Fourier series represen-

; tation with the coefficients A} k) and B_ k)

.r

!!

"" _.(T) = A(ok) +E (A)k) cos jT + B.(k), sin iT) (7-1321 ,)

,. j',l

The number of harmonics retained in the series is H; higher harmonics are not

; considered since they are produced more by noise than by real physical varia-

'_ tion. It is sufficient to use H = 6 for the foF2 comput_ion and H = 4 for the
"; M(3OOO)F_ computation.

_ The Fourier coefficients A.(k) and B(. k> are numerically mapped as predicted,

or final, coefficients U,, k, _vhich are Jthe fo F2 or M(3000) F2 coefficient sets

used for the f0 F2 and M(3000)F 2 computations, respectively.

• A (k) = j = 0, 1 H: ( j U2j, k ....

' ) (7-1331

i = U2i-l,k J = 1, 2 .... H

Thus, O
%

_ x H I_(4), k, T)= _kffi0U0'kGk(_' k)+ _. OS iT" k"0 U2j'kGk(_' _)

: (7-134)

_ sin jT" E Gk(4_, h._ U2j-l,k
\ k"O
\

• The geodetic functions Gk(<p, _ 1 are linear combinations of the surface spherical
harmonics. Extensive investigations to find the best arguments for the harmonic

functions resulted in the use of the modified magnetic dip x = x(_, _1, since

smaller residuals between the measured and computed test data values for f0F2

were obtained for this case than for any other case. Thus, Gk(_, _) is both an
explicit and an implicit function of latitude _ and longitude _, i.e., s

k
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• " l

c,o(®, 'in x i(%135)

Gk (qb, k) = s in qk x ' cos k qb• s in kk i|

|
k=l, 2 .... K

where qk denotes the highest power of sin x for the k th order h,,rmonic in
longitude.

The modified magnetic dip x is an explicit function of latitude and the magnetic
dip 4), where _ is computed from the magnetic field compoaents X(_, k), Y(_, k),

Z(_, k), i.e.,

1 _ = tan-1 -Z (7-136)sin x - --,
¢_2 + cos_

where X, Y, and Z are the north, east, and vertical components of the magnetic
field vector. They are computed following the spherical harmonic analysis of
the magnetic field by Chapman and Bartels, as discussed in detail it, Reference 11.

Defining

Re
0 = 90 °-q5 and R---

Re + hm

where R. "_ equatorialradiusoftheearth

hm _ heightofthe F2 layer

the following expressions for X) Y, and Z result

6 rt

X = d"_ Pn,,m(COs 0) [_ COS m)_ + hmnsin mK] R n+2

£ _, mPn,m(COS0)
(7-137)

y = ' [gin s in n._k- h mcos mK] Rn+2
sinO n

n=l m'O

6 n

Z= _ _ -(n+l) P re(cosO) [g_ncos ..k+ h:s inmK] R n+2

n= I mi0
7-51
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Values tabulated from the analysis of tb_ magnetic field for Epoch 1960 are used

for the coefficients g_ and h_. The quantity P,,m (cos 8) is a multiple of the ;_
associated Legendre function. •

- In addition to the maximum electron density, the empirical electron densi_

profile also requires the half-thickness of the bottomside layer Ym' and the five
• topside decay constants k 1 through k s. The bottomside layer half-thickness is

interpolated from tables in which Ym is modeled as a function of f0 F2 and local i
_ - time. The five topside decay constants are interpolated from tables as functions

of f0 Fa, magnetic latitude, and daily solar flux. Adjustments for seasonal effects
_L are then made for y_ and the lower three exponential decay constants. The

magnetic latitude is _ven by

7

, % = [si % + cos % - (7-138) ,

" where (_p, _ ) are the geodetic latitude and longitude of the magnetic north pole. :;

7.6.3 Chapman Profile Refraction Corrections
j

The refraction correction formulas described in this section assume a spherically !

• symmetric atmosphere. The tropospheric cgrrection terms utilize an exponential ) !
refractivity profile and the ionospheric correction terms utilize a modified - _ !
Chapman electron density profile. Approximations in the derivation limit the
application at very smad elevation angles. The values for I_ and h m used in
the following equation._ _re determined as functions of the location of the tracking

station and the time as described in Section 7.6.2.3. The scale height H x is
calculated from Equation (7=123). _

7.6.3.1 Range Correction ":

There are two speeds associated with electromagnetic signal propagation through _::
a medium of index of refraction n ,'

c (7-139)c -- phase speed----
P FI

+

c -- group speed- c dn (7-140) I '
n+_

dv

where c is the vacuum speed of light.
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The phase speed cp is the speed associated v ith a phenomenon sensed by a phase
measurement. The group speed cg is the speed associated with a measurement
of the transmission time of an energy pulse In a nondispersive medium, such
as the troposphere, dn/dv = 0 by definition; therefore, the phase and group
speeds are the same .,

c c (7-141)
Cp = cg n 1 + N T

in terms of the refractivity given by Equation (7-115). The ionosphere, however,
is dispersive and the two speeds are different. Ap£ropriate differentiations and _:

substitutions of Equations (7-117), (7-118), and (7-119) into Equations (7-139)
and (7-140) show that, to first order in N I _

c,_ c

Cp - (7-142) _
n 1 - Nz _ }

_ c (7-143) i _"= nc = (I - NI) c = / ,-
eg 1 + NI i "_

_-_ The phase speed is greater than the vacuum speed oi light. The time associated ) ;
with the transmission of a signal over a path from the tracking station to the i
spacecraft is written as .

= -- )ds +- ) ds ,,
Atp c c __total path cttoposphere "ionosphere "_,

(7-144) }

At = --c (I +NT) ds +--c (I + NIp ds }
"*total path Ctropospher e "ionosphere

depending on whether or not the measurement is of a phase or a group transmission 1
property. In these expressions, ds is the increment of length along the signal ._
propagationpath. _ ' '

The f_rst terms in Equations (7-144) (unity in the integrands) represent the i

vacuum transmissiontimes,and thesecond terms (therefractivities)represent _}

.}
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:; }
-, the time corrections Ate caused by the atmosphere. The evaluation of Equations " ,

,_ (7-144),by substitutingfor therefractivitiesfrom Equations(7-1!6)and (7-IR2),
= yields the total atmospheric range correction in the form _

., Ap --catc = csc E[Q + U - (P + V) cot2 E] (7-145) i 4

_ The ionosphericterms are

"":: 40.3 NineHI[e- Qhm-hL) 'HI)]_, Q=+ _-z _ _e e

'i zf"

40.3NmeH! [e.e.. ffi e"e .,_ P : + - i7-14(;)

- (h- hL)- [S(Z)- SL1} /i ,]

where the positive sign denotes the range increment due to a group delay, and
where the negativesigncorrespondstothe phase range decrement. T_,etropo-
sphericdelay terms are

U " HTNs

(7-147)

H_NsV-
r

_" In Equations(7-145)through(7-14_)

E _ elevationofthestraightlinerelativepositionvectorfrom tracking "
stationto spacecraft

i" h _ spacecraft altitude

o

rs _- tracking station radius from the center of the earth

_"frequency of signal transmission

hL "_lower altitude limit for the ionosphere (set at 80 kilometers m GTDS)
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L=, _ .... '........ II I _ _ I . . _ _' [ ilil ill I III I _" "

I _ S(Z) = e -z - e"2z e'3Z e'4Z (7-148)2. 2-'---T3.3! 4. 4! + "'"

SL = 0.5772156649 + _ (7-149)

where

h-%
z - (7-150)

H
I

.: The expression SL is used a_ the evaluation of the series S(z) at the lowsr limit
, because of convergence difficulties with the expression given by Equation (7-148).

: The approximations made in the evaluation of the integrals ill Equations (7-144)

lirrdt the validity of the form of the solution given by Equation (7-145). In
; 9articular, the error increases as the elevation angle decreases. Hence, the

• algorithn_ which is implemented in GTDS modifies this basic form (Equation

: (7-145)) in order to minimize the erroneous excursions at low elevation angles. ,i/

Typically, the true range refraction correctiorJ increases monotonically as theelevation angle decreases. LL:uation (7-145), however, can exhibit a maximum
value at some angle and then decrease (even to negative values) for smaller

angles. The maximum value is found by setting the derivative

dAp _ (c_t E) Ap + 2(P + V) cot E csc 3 E
dE

\ to zero and solving for E = E M

cot2 EM = Q + U - 2(P + V) (7-151)3(P + v)

In an example computed for typical troposphere and ionosphere profiles and for

"_ a VHF frequency of 136 MHz, the maximum v_ _e given by Equation (7-151)
• occurred atroughlyEM = 22°. Thus, itwould notbe a good approximationto .

truncatetherange correctionstothissame maximum valueforallelevations
E < 22°. Accordingly,thealgorithminGTDS simply replacesthe truecot2E

term in Equation(7-145)withthe limitingvaluegivenby Ecmation(7-151)when

cot_E > cot_EM. The csc E factorin Equation(7-I_5)causes the range correction
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to continue to increase as E decreases below EM. In fact, it is necessary to "-" :
truncate this factor land hence the range correction) at a small elevation angle _:_
to prevent the values from becoming unrealistically large. On the basis of ;Z

comparisons with ray traces computed through a typical ionospheric profile, iit was determined that the csc E cutoff should be made fc,r sin E < 0.225. The ,

comparison of the ray trace results with the GTDS algorithm is shown in i i
Figure 7-5. The ionosphere was represented as a modified Chapman profile
given by Equation (7-120), with

N = 1.0x 1012 electrons/m 3 _;
m

h = 300 km ,:
m

\

Hx = 65kin

v = 135 MHz

For E _ 35°, the corrections given by Equation (7-14 are essentially the same

as the e: act ray trace results. Below this angle the errors are i_._s than 20%. ,,
,2' ?,

Since unc_.rtainttes in the knowledge of the ionospheric characteristics can ,>-" '_
exceed 50%, it is not worthwhile from a practical standpoint to insist on greater ;

accuracy in the algorithm at lower elevation angles. _ , =_

7.6.3.2 Elevation Ang!e-I_pendent C¢.rrections

. Bouguer's Formula, the analogue to Shell's Law for a spherically stratified

medium, gives :

: (7-152) •_ "_'nt sin i -constant ,

\\ ':
along any ray through the medium. Here i is the local incidence angle between

the ray and the radius vector of magnitude r. Substit_Jtivg r, + h/or r in this ,)
formula and evalu,_ting at two points on a ray yields a rela_onship for the two

?' incidence angJ_.s as functions of the altitudes and indices of refraction '_

= (7-i53)

sin i n o : _

, If the initial point is taken at the tracking station, the apparent elevation angle

, : of the ray is F.. The initial point _rields 1 i
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i

! *

ho=O

no = I + N (7-154) .

s in i0 = cos Ea

: SubstitutingEquations(7-154)intoEquatinn(7-153)yie!ds
w

n(r s + h) (7-155) ;
,_ cos E s in i

" (1 + Ns) r. }

Ifiwere known a prioriatthespacecraftposition,Equation(7-155)couldbe used

to compute the apparent elevation angle at the ground station. However, i is not

•, known and Equation(7-155)must be modifiedto re2,rmulatethedesiredsolution •
interms ofquantitieswhich are known. An approximationismade to an integra-

: tionalongtheray,resultingin •

-_ cOS E .i"

cosE = (1 +N,) (I + I) (7-156) "

where

I - cot E [Q - U - (P - V) (2 + cot 2 E)] (7-157)
r _ _

S

r + h / (7-158)

Equation(7-156)isused as givenforthecorrectionof Minitrackdata,sincethe _
; directioncosineswithrespecttothe stationhorizontalbase linebothinvolvethe ,

factorE,. The correctionfortheelevationangleisdetermined(viathetangent
o_ the difference of two angles) to gi_e t

j.

_cosEIv/il+N) 2 (I+ I):2-cos:_E-si.n_]I (7-159) ,

........ _ ............ t

g -E= tan "I Lc°s2 E + sinZv/(l , Ns)2 (I _T)f_c_s 2 :" ":
.,J _

i

J
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_, The refraction corrections to the X and Y gimbal angles (for both the 30' and the .

- K 85' antennas) enter through the dependence of these angles on the elevation angle
of the prooagation path. The appropriate corrections are

t

sinA cos E[sinE-, (1 + Ns) 2 (1 , I) 2 - cos 2 E; 1 "'"

_6

(7-16o)

cos Acos E ,(I , N) 2 (I , I)2 cos 2 E- sinE

_, (yA_ y)ss _-sin-I sinAcos I - sin2 Acos2 E _ _'(I+Ns)2 (I + I)2 - sin2 A cos2 E
1 + Ns) (I I) :

where A is the azimuth angle.

7.6.3.3 Doppler Corrections

The effects of atmospheric refraction on USB Doppler measurements are ex- :
:i

': pressed in Appendix C in terms of difference vectors A_ and _d between 'l

unit vectors along the actual (uplink and downlink) propagation paths and the ' ,
i, straight lines characte rizing the hypothetical vacuum propagation paths.

Figure C-1 depicts the geometry of the two- or three-way Doppler signal ,,
,•,, transmission. From this figure, the four equations which define the conditions

:, at each end of the uplink and downlink paths are (Equations (C-12) and (C-t4)) :

_- !
Li _ Li -_ l__ ,_ '

•,, (7-161) IV V

: ¢, =_+A
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where ' }

oY

,"

and (7-162) :
t

- L
t ', ,

- t

; -, are unit vectors pointing up along the uplink path and down along the down!ink _ ::

path (both paths are characterized as straight hne relative position vectors) and

?

r--__ satellite position vector

YT "" ground tr_._mitter position vector
°J

_1¢ "_ ground receiver position vector

_, An equationw'._sderivedinAppendix C forthe Doppler-plus-biascyclecountN J _
for the two-way o_ three-way measurement made by the USB system. The ._/
atmospheric refraction effect is the term (Equation (C-34)) ._

The quantity i
l

A_(t + Atr._) + Ap(t) 17_16._) ', '{
A/_°vg = 2 ', :

_. is the average of the quantities obtained by evaluating

A,_ = A_ T • rT + A_v ._ _ A_v • _ _ A-dR • r x (7-164) ,'_

at the beginning and at the end of the Doppler-plus-bias counting interval, _ ::

The computation of the USB Doppler refraction effect, therefore, requires a _ ,: •

: means forcomputingthe correctionvectors/_UT'_' _-av'and/xde atthe , ;

appropriate times, i
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" _ The correction vector A_ T for the uplink path at an instant when the ground station i

transmits a signal to the spacecraft is the difference between the unit vectors _T i
and g along the actual and the hypothetical vacuum propagation paths. It must

lie in the plane defined by _ and the local vertical Vr at the station, if it is
assumed that the refractive medium is a spherically layered atmosphere. There-t

fore, AuT is expressed as a linear combination* of _ and VT i

= +BYT 17-1a5)

In terms of the apparent elevation angle E o of the actual propagatiou path and
; the straight-line relative position vector elevation angle E

u T'u : cos (E. -- E)
(7-166)

UT'V T : sin E

• Substituting from Equations (7-161) and (7-165) into Equations (7-166) and solving
_" explicitly for A and B yields

i cos Ea :_"
! A- 1

_ cosE (7-167)

_ B --sin E. - tan E co_ E. "

d

Equation(7-156)can thenbe u_ o eliminateE ,givingfinally

t _

' I- 1 _1 i• A= (I +Ns) (I + I)

.. (7-168) i

B - (I + N) (l + I) I + Ns)2 (I + I)2 - cos2 E - sin

t

• where I is as defined in Equation (7-157) and N, is the tropospheric surface i_ _._ refractivity at the transmitter. '__ ,

_-' *The vectors u'and'_ T coincide in the exceptional case of a direct overhead alignment. Hc,wever,

:: _i thiscasew°rks°utc°rrectly'sinceA"-B'giving AU'T =0"
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Figure 7-6. UplinkPath Geometry at

Spacecraft Signal Reception.

, |

; i _ Similarconsiderationsapplyinthe determinationofthe correctionvectorA_ v _
!

_.j for the uplink path at the instant when the signal is received at the spacecrsft. ,4The geometry and notationare presentedinFigure 7-6. Here ag_n, thecorrec-
tionvector is expressed as a linear combination

A_v = CW + D_v (7-169)

l

The following relationships are obtained from Figure 7-6
t

U*V v ----COS O"

• Uv'U = COS cL i

; "\ i'
_,.. U v'V v = COS i !

, cos _ = cos crcos i + sin crsin i

i

Straightforwardmanipulationoftheserelationships,usingEquations(7-169)and

(7-161), yields a system of two simultaneous equations in the unknown coefficients i

C and D. The solutions for C and D in terms of i and cT are _ j

c=sin_i - I !

. sin _ (7-170) I

D- cos i -cot o'sin i t,!

" L i
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Equating the right-hand sides of Equations (7-155) and (7-156), making use of i]
Equation (7-115), and so[ving explicitly for sin i yields

rT COS E
sin i = m (7-171)

rv (I -NI) (I + I) ._ "
{

Examination of the triangle in Figure 7-6 shows that
,!
t

or i
rr _

E+8=---_

Therefore

._- sin = = cos (Z + 8)

i /

and from Equation (7-158) this can be reduced to _ ->1

• ,. rT

sin _ = cos (E + 8) = _ cos E (7-172) "
r

v

- Substituting Equations (7-171) and (7-1_2) into Equation (7-170) finally yields

C 1
il (1

(7-173) "_

D = (I Nx) (I + I-_ ii - NI)2 (I + I) 2-
r2 r2
v v

Ifthe same procedureis repeatedforthedownlinkpathto solveforthecorrection i',_ '

,_ vectors A d'v and Ad R, the result is _,_ '

, _
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J

A_ : C'd + D'_ (7-174)

- A°a+B'v.

The solutions for C' and A' are identical with those for C and A, whereas the i
: solutions for D) and B ) are the ne_,atives of those for D and B (Equations (7-173)

and (7-168)).

The quantities I and NI appear in the expressions for the primed and uriprimed
values of A, B, C, and D. Equations (7-122), (7-146), and (7-157) show the

dependence of these quantities on the signal transmission frequency. The up[ink
carrier frequency should be used to compute the unprimed quantities, while the

down[ink carrier frequency should be used for the primed quantities.

The Doppler refraction correction for GRARR VHF and for sidetone ATSR data

_i is shown in Appendix C (Equation (C-42)) to be of the form

' i -Ah "r

; _ v v

_ where the spacecraft velocity_ is taken at the signal turnaroum, time correspond-
ing to the midpoint of the Doppler count interval. This time is the observation

time tag (the preprocessor-determined midpoint of the Doppler count interval) _ :

corrected in the orbit determination processL_g for the light time from the ,
spacecr_t to the station. The light-path bending term/_ is computed accord-
ing to Equations (7-169), (7-170) and (7-173). The vector _ is defined (Equation
(C-12)) as the unit vector directed along the instantaneous relative position vector I

" from the station to the spacecraft. All other parameters in Equations (7-170) mud

:. (7-173) are defined in terms of this instantaneous relative geometry.

i

:_ "\ 7.6.4 Segmented i'rofile Refraction Corrections

! The refraction correction formulas, described in Reference 10, assume that

the total refraction correction is the sum of the tropospheric and ionospheric
corrections as follows

; AE =AET + AEx (7-175)
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' _ where Ap.r, AET, and A/_T are due to the troposphere, and App AE i, and A/3I
a: due to theionosphere.These individualcorrectionsare presentedbelow.

-1

7.6.4.1 Tropospheric Correction i'
The troposphericcorrectionsare obtainedfrom Reference7 and assume that _ ,

the atmosphere has spherical symmetry and an exponential refractivity function I
as describedby Equation(7-116).The equationsare applicableover theentire
range of elevation angle (0-90°).

Using monthly mean values of the refractivity N,, the scale height HT, and the i

local earth radius r. at the tracking sta+ion, the following parameters are t

calculated :!

p = v/2--HT/r' (7-176) ,

q = 10-6 N r /It. r (7-177)

J
: j

The range and elevation angle corrections are , I

" (I = 10-5 NsH T M - 1 10-6 Nsr2 cos2L L2/ (kin) (7-178)

4 _ AET = 10-6 N cos g (i - r L/p) (radians) (7-179)
J,

where

: _ E _ apparent elevation angle of the received signal

• p _ slant range to the satellite ' •

_' The quantity L is given by

1 10- 5 Nsi2 (7-180) :._",,. L= 1 - i sinE. +_ ,

_ and the quantities i (bending integral) and m are complex integral functions of ." '

_i the refractivity function and the elevation angle. Reference 7 presents the ,
: following approximations for i and m which are accurate over the entire range

_,: of elevation angle

"_, 7-65
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I , j , l. .if i __I....... j.i.. J m , 6._

) t

i ::F(sinE, p2Ii, p412 ' io/p' i,/p_) (7-181) ' ]

m = F(sin E, p2M, p4M2, too/p,m,/p 2) (7-182)

where the function F is given by i

1
:, F(a, FI, F2, fo' fl) =

:" ' gl
0.4

( (7-183)
r g2 x 1.08885 ,

a+

; g3 x 1.320903
. a+

a + g4 x 1.21313
%

1 with

gl - FI .'/.
,y"

t"

g2 = (F2/g,) - g,

(7-184)

; g3 = g2 gl I - g* - (I + f,g,

g4 = f0g,g3/g2

t

,\ The variables Ii,12,io and i, are
• \

I2 "-'4 -_q + _ " / (7-185) Y

ko - _ (I - 0.9205 q)-O.4458

i, --2/(1-q)

- 7-66 _,_
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\

9. and the variables M 1, M2, m o and m_ are :

" 1 3

: M2 = _- -_-_q+-_q
e

: (7-186)

: 1 q2i -lqk o5 mo=i o 1 +q+]-_ ;

with

k o = _ (1 - 0.9408 q)-O.4_s9 (7-187) ./

i_' :l The range-rate correction is given by_7

_' ApT = -10 -_ EsNsHT cos g a - L cos 2 E ?
_, . p s ._

(7-188) :

_-_! x(i + 10 -6 N i j - j sinE _;

q _

where ::

' _ i --F(sinE, p2j1, p4j2, jo/p, jl/p2) (7-189) , )
, ?

''r _ n--F(sin Ea, p2N I, p4N2, no/P 2, nl/p 2) (7-190)

: The variables Jl, J2, Jo, and Jl are

J1 =711
(7-191)

1
_,: J_ =_ (5I_-J_) _

i' "?7-67
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Jo =_ (7-191) _
(cont'd)

Jl = i2/Jo 2,

where
I

i2 = v/-#w/(l- 1.023q)1._ (7-192)

The variables N,, N 2, n o, and n1 are _,

¢

3

N1 = _ M, !_

q'

, N_ =_I (5 M2 - N_) (7-1931 }-Ji

1 no = vmq
"%] /J_

%= 1 q)2 + i2q +'4 i2 (iOq) o .;

7.6.4.2 Ionospheric Correction

Ionospheric refraction corrections are computed from the empirical electron

density profile, described in Section 7.6.2.2, and its integrated electron content.
The profile is computed for the latitude ¢ and longitude _ where the radio wave
from the observing station Lo the satellite penetrates the ionosphere. This is

%
cal!ed the subionospheric point and is computed as a function of the station

latitude ¢, and longitude ,', , and the elevation angle E and azimuth angle A from "
the station to the satellite

¢= sin -1 (sin_b s cos a + cos q5s sin a cos A) (7-194) :

_,=_, +._in" (sin A._!2,.'_ '°-:9_) ' :
\ ".:o _- ¢

where a is the geocentric angle between the .marl:,,, arq r, ._.tor,, sp:mric point

[
•ma ,_
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i :

7T
a =--- E - sin "I (7-196) , .

;f
i

and hm is the height of the ionosphere at the maximum electron density above _ £the surface of the earth. On the first iteration, h is estimated to be 300 kHo-
rfl _ i ;

meters. After computingh m via Equation (7-130), the difference between the ' icomputed and estimated values of h is determined. If this difference is less
m _

than 1 kilometer, its effect is negligible; if it is greater than or equal t_ 1 i
kilometer, Equations (7-193) through (7-196) are iterated upon to obtain a new
value of h .

m }

I

The total vertical electron content NI required by the correction algorithm is
obtained by integrating the electron density profile in Equations (7-124) and !

I (7-125) from zero to the height of the satellite h. For a satellite below the

biparabolic layer of the ionosphere _'

NI = 0 (7-197) :,,• For a satellite in the bottomside biparabo]ic ,'ayer / ;_

NI = NIdh = Nm Ym - (h - h) + 3 2 5 v4 (7-198) -Ym " m

• 'r',

where y,_ is the half-thickness of the bottomside layer of the segmented electron _ '
' density profile.

For a satellite in the topside parabolic layer

t__ (hE5 .h)S

i N, =Nm ym- (h m-h) + 3y" " (7-199) !

' t .J _"

where Yt is the thickness of the topside parabolic layer (see Figure 7-4) and is '

if' given by ,'_i

y,. = ay m (_-200) "_
4
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| where " ' /

FI for foF2 < 10.5MHz _

+ .1333 (2oF2 - 10.5) for foF2 > 10.5MHz _

i For a satellite in the first exponential layer {'
i ,

_ where

Y'l+ kl2YZt- 1 :!

i d = kl

j For a satelliteJnthe second _xponentiallayer

! ...;..,.,,• "}"

(8 . d_t_) (1 62 ) 1;NI --Nm Ym + d + Nm -_ .

'7-202) _ ,_2

( " "[kl(h2"Ll) +k2(h'h2)]) i

x 1 -- e kl(h2-hl) e "kl(b_'hl) - e } ,r

kl + k2 } :'%
y

For a satelliteinthethirdexponentiallayer :

(if'5 d3_t2) ( d_-t2)

NI =Nr. y_,+d- ,_N I- !

- [ ,]
- e "_l(h2"bl ) e kl(h2"hl) I -- e "k2(h3-h2 l

× , �(7-203'
kl k2 t_

e'[kl(h2"hl )+k2(h3"h2)] [1- e'k'(h'h3)l_ _ ' "_"a+

k_ j i

7-70 REPRODUC/BE,rT_r01rT/-I_
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For a satellite in the fourth exponentza! layer :-

d3 '\ d_

NI=N ym +t:-3_/ +Nm 1- ._ '

f .. t'h2"hl ) r t

1 -- e -kl (h2-hl) e kl L1 - e "k2(h3-h2)l.J ._ :';

kl + ks _ -,

(7-204) _ _

"[k I (h2" hl)+k2(h3-h2)l I 1 e'k3(b4"h3 _ i "::

k3 i ?

- l'k 1 (h2-hl)+k2(h3-h2)+k3(h4-h3)] - - -)e :_- ;

+ k4 I ;;

Finally, for a s_tellite in or above the fitd_ exponential layer : ,, _
/ ,\

5

(aI _ ,'_" N'I " INm Ym+d- +N m 1- • _ !

h2-h ! ) e'kl(h2"hl ) : _-

[ 1 ,

"[k 1(h2"hl)+k2(h3"h2 )+k3(h4"h3)] e'k4(hs-b ; _ , ,,
e - :

- k 4 "_,

e'[kl(h2"bl) 3"h2)"k.](h4"h3)+k4(b$'h4)] - e'k$(h'h_ _ _}

+ ks

The range correction _p_ is computed/rom the verticai electron content ant the [' i_.

i elevation angle at which the radiowave pas,,'.,,, through the ionosphere _

] 9760] 7203-368



40.3 Nz l^. (7-206)
_t.,I =

f_ 1 - cos 2 g
e + hmea a

I

where the height of the mean of the electron distribution h_e,. is

1 NI 8

h :h a+2 N 15Ym (7-207)

the quanti_y ¢ _s the transmismon frequency, and
J

g

7 = + 2fd2] (7-208) ,,
't

' I
where fu .ad fd are the uplink and downlink frequencies, respeehvely.

The range-rate correction A_I is obtained by differencing two successive range
corrections in the following form

Api(t) - Api(t - At)
= _ (7 -209)

A/_! At i

At the start of a data span for which no previous range correction exists, A_I
assumes one of the following forms:

Sate(lites Below the Lower Biparabolic Layer

A_, = 0 (7-210)

• 7-72
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, i! .
-- /

Satellites Within the Lower Biparabolic Layer

j ,_.
k, ::

_ (40.3 x 1.24 x 10 -2) _ " ,

_ dApi (_)2 \ ym ]_j x _ :

_" - cos E ._
i Re + hmean 2

g: (7-211) !

_" -Re- sin Ea COS E ,_ :
" _ A,DI • + h.lean] a .,

cos E

t- ;i 1 -- R + hmean ._'
; where fl is the altitude rate and 1_ is the elevatior: rate of he satellite. //

• j Satellites in the Topside Parabolic Layer

(h m_h): 1

(40.3 x 1.24 x 10 -2 )

dA#I (f f___2) 2
- - x × I_ "

2 1/2

- cos E -_ !
e + hmean

(7 -212) ',

Apl Re + hmean/ sin _a cos E a
+ XE

1 - cos E
-. e + h,.'nean : ,

7-73
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Satellitesin tbe Exponential Layers I

ApI = d t - x × _ x em
R :

- e COS Ea
e + hmean

(7-213)
t

5.]_Pl + hme,n/ sin g cos g
+ e XE

\?

)1 - ,_hme, cos E

°J

/ The exponential multiplier em of the l_ term can take on five different forms.

For a satellite in the first exponential layer
1

J
i

%- -kl(h'hl) (7 214a)

For a satellite in the second exponential layer i

em= e -kl(h2-hl) -k2(h-h2)c (7-214b)

For a satellite in the third exponential layer

em = e-kl(h2-hl ) e-k2(h3-h2) e -k3(h-h3) (7-124c)

For a satellite in the fourth exponential layer

em = e -kl(h2-hl) e -k2(ha-h2) e-k3(h4-h3) e"k4(h-h4) (7-124d)

Finally, for a satellite in or above the fifth exponential layer

em= e-kl(h2-hl) e-k2(h$-h2) e-k3(h4-h3 ) e-k4(hs-h4 ) e'k$ (h'h5) (7-124e)

The elevation angle correction AE_ is given by

X1 cos a - X2
cos (AE) = (7-215)

(X_ + X_ - 2XIX 2 cos a)"2

: ODUCIBILIT£OF Tlilg }
•i 7-74 KEPt, ... t)_C. IS _OOB _m
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_ where

_,. Xl [(Re + h)2 _ ._2e c°s2 Ea ]1/2 + Re cos E tan -a. (7-216) :_

l '!a (7-217)
X2 =R e sine a -R e cos Ea tan-_

a =- _: -- (deviation angle) (7-218) :
- _ 2 r o Nm :

f ,
h :

_ r0 = R + hm... (7-219)

h :h + 1Nz 8 (7-220) :

- _ mean m 2 Nm 15 Y.1
_'" ..;I''f "":

_- Re

-- cos E (7-221) _
" - ] sin q5o = ro

The ,,ariable _ is tabulated as a function of ,_

sec2 _m :,

+_ ._
t

where _ :

Re (7-222) _
__ COS F-a; S ill (_) :

'mv r
m

; and .-/i

• = Re + hm (7-223) ,_ ,r m

+, i

! +
.; • ' _
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7.7 ADDITIONAL CORRECTIONS I

7.7.1 Light-Time Correction
._

GTDS provides for a light time correction which can be applied to GRARR, C-Band, /

' and Minitrack observations for greater accuracy of modeling. All of these ob- ,

servation types are modeled (Section 7.2.3) in terms of the instantaneous relative

poqitlo_ vector from the tracking station to the spacecraft, computed in the

=- " local tangent coordinate system (Section 7.2.2). Since the spacecraft is the

only object which is moving in this coordinate system, the appropriate time for

calculating the instantaneous relative position vector is the time t v when the

vehicle transponder turns the tracking signal around. (For the one-way Minitrack

signal, t,. corresponds to the time when the signal was transmitted by the space- :

craft.) The actual observation is time-tagged at the time t a when the signal is (

received at the ground station. The light-time correction consists of making an

• . _ approximation to tv by changing the observation time tag to

= tR Ap' t v - -- (7-224)

/

where Ap is the one-way relative range from the spacecraft to the tracking station•

A first approximation to -_p is determined n GTDS by computing the relative range

vector at the actual observation time t a, _ -lizing the spacecraft position vector

at ta. The difference between this relative range and the correct relative range -"

corresponding to t could be corrected by means of an iterative estimation
algorithm. However, this is not done in GTDS, since the very small im?rovement ,

in accuracy is insignificant compared w_th the degree of the approximation

implicit _n the basic observation model. Thus, the first estimate for Ap is ;
used in computing the light-time correction to th_ observation time tag. _

7.7.2 Antenna Mount Corrections '

For X and Y antezmas, a correction is performed _n range and range-rate measure- }
ments, since the electrical phase center of the antenn_ moves with the antenna

and is displaced from the geodetic point of reference which is the center of the _:

fixed axis. The correctionAR applied for range _s

AR = D cos(Y) (7-225) _,

J_

which, by differentiationwith respect to time, gives the correction for range rate

/_R = - D s in(Y) Y (7-226)

7-76
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i In these expressions, Y is the observed Y angle and D is the nominal distance ._
_. from the electrical phase center to the center of the fixed axis. The correction '_
_ to _R and _ due to the X angle and the corrections to the X and Y angles due _ _.
_ to the displacement of the electrical phase center are ignored. _ :

, 7.7.3 Transponder Delay Correction _ '

-c For those tracking systems which use a transponder on'_oard the satellite to _
_" receive and then retransmit a signal, the transponder deiay, i.e., the time "

_ interval between reception and transmission of a given signal, must be taken _ _
_:-_ into consideration. These satellite transponder time delays are functions of

_ _ the frequency of the signal received by the transponder, i.e.,

!= AT = f (VR) (7-227) _ _:

The characteristics of the function f for a sT_eclfic transponder must be determined _
experimentally by calibration of the transponder on the groand boiore launch. ]
The function obtained in this maturer can then be entered in GTDS as a table of :

transponder delay time versus frequency, from which the delay for any inter- _ /,,
mediate value of frequency nan be obtained by interpolation. As an alternative, _i_ '2:
provision is made in GTDS to use nominal (default) tables or constant dela,, timcs.

7.8 ESTIMATION MODEL :

The deviation between the actual observation and the predicte( observation is
modeled as _ first-order Taylor series expa__sion around the predicted observa- :
tion. This expansion relates deviations in the observation residuals to devia- ,:

tions in dynamic parameters, station locations, observation biases, and time
biases, and establishes the required set of linear regression equations. The -,_

estimation model for any observable may then be written as

_0 _ (7-228) _ '_
0o-0 ¢ =-- Aq+n ! ,

where

00 -_ th_ actual ,_bservation with time tag t ,'

O "_, _he predicted observation based on a previous estimate of the parameter
vector q

,'_q "" the correction to t|:e parameter vector _
'i

,_ _ the observation noise
., 7-77
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The parameter vector _ may consist of dynamic parameters _ (those parameters )

i involved in the equations of motion); station locations _- ; observation biases b;
and observation time biases _ t. The total parameter vector may then be written
as

J

_ = ] (7-229)

' " b

i. t

The mocleled observation can ' o written functionally as

(7-230)
.4 0 = f(_, t)= f(_, ¥, b, _', t)

:: ' i Substituting the appropriate partial derivatives of Equation (7-230) into Equatio_

: _ (7-228) yields .t

=/_Oc._ (_O_-_r + (_)Ab /_Oc ')A(6t)+n (7-231)o,,-oo/V)_+ ,_-j +\_--_->
, which may be written in a more compact form as

-_1

[?oo:_oo_oo_oo7 >j

,. ) 17-232)

, ',. o0-oo: [?¢p:
) ' Ab ,

! 5(_t

or

0o - 0¢ - F_5-q+ n (7-233) ,

Equation (7-233) define3 the linear regression equations that are solx ed by the
iterative classical or sequential weighted least squares methods described in

m,

, 7-78
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i
_ _ Chapter 8. The formulation, as shown in Equation (7-233), describes m equations i

qfor m observations) in p unknowns (the number of q parameters). The matrix _

F in Equation (7-233) is of dimension (m x p). Chapter 8 derives the required ! "i

solution to the normal equations in terms of F and the weighting matrix W under

the assumption that W is a diagonal matrix, that is, the observations are _ n- "_ '_

correlated. Under this assumption, the terms in the normal equations requiring _ ' :_F can be developed on an observation-by-observation basis, thus yielding the

solution of the normal equations without explicitly forming the full (m x p) F _ ,_° matrix. This is a standard method for all existing least squares orbit determina- _ :

tionprograms and is discussed in more detailin Chapter 8. "i :

i '/ p

j,

.% ¢

?

I

3 ' :
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-" C HA PTER 8 1 :

: ESTIMATION

The basic orbit _stimation problem involves solving for values of a set of I

_, . parameters from an observational model (described in Chapter 7) so as to mini- t
:_. mize, in the sense of weighted least squares, the differe-ces between a _omputed _

:_ and an observed trajectory. The model parameters include the trajectory of the i

vehicle (initial conditions and differential equation parameters), the locations of _ :_

_. the observing stations, and the bias errors in their instruments a,."clocks (these |
errors may vary as a function of the pass over a station). In practice, values _ _

_ are determined for only a selected subset cf the model parameters. _ ,

)_ Since the observations made by a tracking system are imperfect, no tra- i
_, jectory f_ts these observations exactly. At best, only an estimate of the actual t :

i trajectory can be obtained from the data. GTDS uses either a classic,_l welgbted i !

_,. least squares estimator (derived in S_ction 8.2) or a sequential estimator (de- _
]

• _ rived in Section 8.4.1). For a theoretical discussio,_ of estimation, see Refer- _./,i
, _ ences 1 through 6. { _.

_, 8.1 DESCRIPTION _,r_'"THE PROBLEM "

: _ L._ a set of m observations, denoteJ by an m-dimensional vector y, be i :_
given. These observations are assumed to be equal to a known vector function i
f of a set of p parameters, denoted by a p-dimensional vector _ plus additive

. ._ lpndom no_se, denoted by a vector _ ,

; The above equation t_ called a nonlinear regression equation. The trajectory ,

_ de_ermina_,on problem is to estimate _ giver. _, the functional form of [, and :

,: _ the statistical properties of _. _

' _ The estimation ;_rcc_-_ : ,_ttempts to deduce a value for _ _hat minimizes the i
_ weightedsum o: ti,es,$-.,'._.'_.of the observationresiduals[y- f'C_)]betweenthe • ,

, !_ actu_lobservationsant thvobservationscomputed usingthemathern.t',cal model. ! '
i"',_ More precisely, ,.

_' _ _ (8-2)

k, .
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i

,, ?
4

f

9" _ , ois minimized, where W is the m x m weighting matrix. This scalar quantity is _ " ;

called the loss fv_ctleu. An a priori estimate of the state _ 0 is assumed to be
_ avatiabl_ for use i',_the minimization. 1he deviation of x0 from the true value of
':_ the state is assv, med to have zero mean a._d eovariance P_ in order to make the

subsequent sE_gistical evaluati.',u more amenable to in_rpre_Uon.
- I

A necessary condition for the loss function to be minimum with respect to
_ is that ?Q/_ = 0. Ther_foce,the value of_ which minimizes Q is a root of

the equation

}
3 _ =- 2 [7- f (g)] r W ? 7 (8-_)
. ?

The method of solving this nonlinear minimization is to Enearize r_qu_ion (8-3)

?_ and then apply a standard Newton-Raphson procedure to iteratively s_olve _he non- i_
! Une;;r problem. Expanding f (_) in a truncated Taylor series about the _ priori "
' estimate Xo yields

.,:., 7 : ? +F (8-4) 1 !
where }

Ax: x- xo (8-5) ..

and ,:

_' fthe mx p matrix of f'l "

", [?_'\ . )partial derivatives o (8-6) -
_(_) with respect to_ t"

; \ F : _._-_x)(_.=_o,L evaluated at -_-- _0 ., _ *',._.

The linearlzed observation vector becomen

!

Ay:FAx ,i_ (8-7)

, it

8-9.

• ° " _ " 3....... - ..... , ..... =
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Substituting Equations (8-4) _ad (8-7) i_,to Equation _8-3j, the lLnearized p:_rtial _ '_
derivative of the loss function in Equation (8-a) becomer

- 2 (_-"-y- F A---_T WF = 0 (8-9)

"" which can immeo,a_ly be _,_tved for _ x, yielding the ci_ssic equation for the 4

best estimate t_ x

A'x = (F r WF, -1 Fr W_ (8-10) ._

The value of _, the estimate derived from the line_ized system, is therefore, . .f.

>

_. The symmetric matrix (F v W F) is called the normal matrix.

As a r ,suit of the linearizatlon performed in Equatiou (8-4), the correc_iou :.

_ _'x must _e sma'_l so as not to vioiate linearity. This means that the a priori .i ,,.
'., estimate x0 must be reasonvbly close to the true extremal solution of Equa- ,,-:

"_":. tion (8-2). If such is not the ca_e, _h_. _rocess is iteratively repeated in a standard ,,
Newton-Rachson procedure, each time using the last best estimate ._ as a reference
for the linearizaUon. The iterations c'.,ntinue u_,.t i the differential correction ,-

vector _._ % _cdly small {i.e., approaching zero), w_-ich ts equiva\ent to minimizing :the origir nonlinear loss function Q(x). ,,,

"-Theinverse of the p x p normal matrix (FTWF) is the covariance matrix: -:

of the error in the weighted '-_ast squares estim,tte _ after convergence is
achieved, and the following statistical assumptions of th_ measurement pro-
cess a_:. satisfied:

_i_ 8-3
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; la) The observatiou no_se is unbiased, i.e., _ (n} = O.

(b) The covariance of the observation noise vector is known and its inverse
_. is the weighting matrix W. Let _ be the variance of the measurement _,

noise cr'mponent n 1, which corresponds to measurement y_ ; c_2 the ,
variance of component n2, whih co_responds to Y2; and so on. The

_: weighting matrix is then

o- 1 2 _t

_-2 0 _"
2 :

W: (8-12)

: ] }

_ 0 o--2

Equating the inverse of W to the covarianee matrix of the measurement ,_ ,-
errors implies that multi_omponent observations at a given time (e.g ...... _ j
range_ azimuth, elevation) are not spatially correlated and that meas-

urements at different times are not time correlated, i ::

(c) The mathematical models of the trajactory and _bservations charac- s

;. terize exactly the physic, s governing the observation process. All
{, parameters such as biases, tracking station locations, and physical

constants that are not being estimated are known exactly. {,

The above criteria can never be met precisely in real spacecraft applications.
:: As a result, the covariance matrix (FTWF) -1 must be realistically interpreted "_;

\_, with regard to the specific application. In orbit estimation applications using :
_i, radar tracking data, the covarianc¢ ,off-diagonal) elements of the measurement _:

:i error are rarely available. In fact, for sensors that measure multicomponent ,,
vectors, the differing circuitry involved in the independent comr_t,:-ents frequently

: yields different time corrections for each compovent. This reaults in a meas- '
: urement vector having components at different times. As a result, GTDS :
': consider.,3 the observations to be uncorrelated scalar measuren.eat_ so that the _::

weighting matrix W is always diagonal and contains only the variances as shown _
_ in Equation(8-12).

! ,
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The variance for each observation is formed from the relationship

(

: whe re

rX,

_ _ the a priori standard deviation of tLe observation noise.

_ _k _ the standard deviation of the data reduction curve fit obtained during
preprocessing of the observation data. The curve fit is assumed to

be polynomial in form.

k I ,_ a specified gain constant applied to Sk"

S k2 _ a specified gain constant applied to _k"

Typical a priori weighting schemes for observations processed in GTDS are

"_ presented in Appendix D.

: There is another, more subtle, qualification for identifying (FTWF) -1

• [ with the covariance matrix of uncertainty. In nonlinear regression problems

such as trajectory estimation, the true covariance matrix is equal to (FTWF) -1

plus terms involving higher order partial derivatives of the computed observa-
tions with respect to the variables solved for. These higher order terms were
neglected during linearization. So long as large deviations are not obtained, the

linearity assumption is reasonably well satisfied.

: In the following sections the specific estimator algorithms implemented in

, _ GTDS and their associated cevariance matrices are derived and discussed, and
"_ details concerning the application of the estimation process are described. Much

of the material is taken from References 4, 5, and 6.

8.2 THE BATCH ESTIMATOR ALGORITHM

In order to facilitate the derivation of an iterative weighted least squares

=, solution, the various quantities that are iteration dependent will be subscripted
with an i. Thus, _'-x in Equation (8-5) is written _"_i =_ - x_, where xi is the
best estimate of _, *.he extended state, obtained from the i th iteration. At the

"1g760"17203-383



beginning of the process (0th iteratien), Xo = Xo is the a priori value of these

: solve-for variables. The objective is to determine _i +1 from xl so as m min-
imme the loss function.

The initial assumption that the measurement vector _ can be related to
the state and model parameters at epoch time t o is given as

_ = f-(-_, _) + H (8-14)

: where two classes of variables are included. The p-dimensional vector _, desig-
nated the solve-for vector, contains as components the state and model parameters

• whose values are known with limited certainty and are to be estimated. The
_ q-dimensional vector ._,, designated the consider vector, contains as components

all model parameters whose values are known with limited certainty but are not
to be estimated. Nevertheless° the uncertainty of Z is to be considered. A priori

-_ values of _ and _ are specified _ xo and z0 with respective covariance matrice_/
PAx ° and PBZo, i.e.,

' _ _o) _, c°_° _ P_o- --- (8-15) /s

_-0) - ¥, coy '_o - z-') ---PA_° (8-16)

On the i th iteration the loss function is defined to be

A,o (_ - _0) (_-17)

The second term on the right has been added to the loss function to constrain

the best estimate to the a pmori specified x0, with the degree of constraint de- .

• pendent upon the uncertainty P Ax0" This term accounts for the fact that x0 is ! '
'_ known to be accurate to a confidence level given by PAx0. Therefore, any solu-

: tion is constrained to satisfy the a priori realization Xc to within the limits of
its uncertainty. _'

To obtain the weighted least squares solution that minimizes Q(x) in Equa-
tion (8-17), the same procedure is followed as is used in Section 8.1. First,

_Q/_x is linearized; then, a Newton-Raphson procedure is iteratively applied _'
to solve the nonlinear minimization problem. For convenience, *.hevalue of x_ ,
for the i th iteration is considered first, and the nonlinear regression equation

: is linearized as follows.

8-6 REPRODUCIBILITYOF TIIE '_
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where

Axi = _ - xi (8-19)
I

:, _ =7- _o (8-20)
• and

: { F i = (S-21a)

_ (_ 7=_,¥ o, ., )

: I ?T; _ Ei = (8-2 lb)

: :t 17'7=_i'7°)
-t /

[. t Since the consider variables g are not being estimated, their values remain .,.-.-"

: _. j equal to go"

; Substituting terms with nonzero mean from Equation (8-18)into Equatiora

' 18-17) yields the linearized loss function

Q' (A'-_.i ) = [Ay i - Fi_-_xi]r W[_-YYi- Fi_'_xl] 18-22)

} + (axi - A'_xi PA

', I where the measurement residuals are
: f

: '_ _'YYi= Y - T(xi' 70) (8-23)

" and the deviation of the a priori estimate from the i th iterative estimate is

_ Axi = _o - xi (8-24) .
\ g,

': !, "_" 8-7
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j _ ," innl u J- an . --- _ . II

The value of A-'_i that minimizes Q,, denoted by Ax i + 1, is therefore
Jg

p-I _i j -'p-1 )-1 [FTW_'_ + (8-25)_xi+I = (FiTWFi+ Ax ° Ax0 ,;

i
I

and the best estimate of the solve-for variables is

i+l

xi+l = x0 + Axk = _¢i +"Axi+t (8-26)

This estimation process is iterativelyapplied untilthe convcr_;oacecriteria

(discussed in Section 8.6.3)are satisfied.

• Equation (8-25) is the estimator algorithm used in GTDS. It requires the

_ . inversion of a p x p matrix, the same dimension as the vector of solve-for var-y

_ _ iables. Insofar as the estimator algorithm is concerned, it makes no differ-
_ i i ence whether consider variables are included. Equation (8-25)depends only

i on the values Zo, not on the uncertainty PAz0" This might be expected, since 4
, ,x_! the uncertainty resulting from the inclusion of consider variables affects only j/"

the second order statisticsor covariances (i.e., the ensemble properties).

The last term on the rightin Equation (8-25)can ouly be included subsequent i

_ to the initialiteration,since on the initialiterationA_x = 0.
I

The estimator algorithm in Equation (8-25) differs slightly from the classi-

cal weighted least squares algorithm (Equation (8-10)). This differonce results

-' _rom the addition of the second term on the right in the loss function (Equation •

(8-17)).

; _._.1 Mean and Covariance of Estimate '_

i The best estimate _ which results from convergence of the estimator ,

algorithm will ne_ be examined to determine its statistical properties. Two

quantities are of concern, the expected (mean) value and the covariance of _"

" the estimate. The expected value of the deviation _x yields the amount of bias :

in the estimate, while the covariance indicates the amount of dispersion or un-

certainty. Obviously, zero bias and minimum dispersion _re the qualities *
sought.

8-8
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'" In the following discussion, it is assumed that the i*.erations have converged
: and that the unsubscripted variables x, _ x, A y, etc., correspond to the converged :.

solution and perturbations about it.

' The expected value and covariance of the measurement noise vector n are

; assumed to be

: _Cd) = 0 (8-27a) :

cov_n_ = w -I (8-27b) :

and thelinearizedvectorof observationresidualscan be writtenas =\
.

" Ay :FAx +EA z +H (8-28) ::

: Therefore, the expected value of by is

{_yy) : _'(FA-x} (8-29) _.

since_ {_ ) = _{A-_} = O. The covarianceof _y is } ?

I , cov{A-'-y} :_.{[Ay-_(Ay)] [Ay- _"-(_-'yy?] T} ' {,

!

; =ES{Az &zT) ET +E$ {_--z._T}+ _{7_T}ET+_ ' {_a "T} 18-30)

PZX Er �w-_, = E z0 , ,

: where the correlation between the consider variable errors and the measurement ;

noiseisassumed zero,i.e., _"

: _' {/-_-zHT} :-0 (8-31)

t

s-9 ,.
i:
A

1976017203-387



f

[

I
, The mean of the best estimate _ is

_ i+l

{_i+l -- X') ---- _ {_'XXi+l -- Axi)

= (1_ WF + p-I _-1 [FTW8 {_} + p-1 _ {A'_x} _ (F T WF (8-32)"- Ax° / Axo

w

2

' = (Fr "¢F +p-1A,o)-1 p-l_x° 8 (_o - g}

However, x0 was defined to have an expecr_o v_ue equal to _ (see Ec_aation

._ (8-15)). Therefore
; t

:: _ {,_-x-} = 0 and _ {_.} :_ (8-33)
L

"N /,#

Equation (8-33) shows that the best estimate is unbz'ased. The eovariance
of the error in the estimate is

A r Ex_]_}

= { ETWF+FTWF+P -1
,,b F r WE P'_'o AXo

. A% + g 8 {A--_zi5T} W (8-34)

+ IP -I _{(_x z_'_x)_z T} ET + FT W _ {_zzT} E]WFAx°

+ p-IA,o #, {(_-_'x - _"x) ST} W F + F T W _ {_ (_x'- ._x) T} PAxo} #_T

whe re

p-I -i

8-10 REI'I_,L)DUCH311,1TYOP 1"1t I:,
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c ' _ To simplify Equation (6-34) the following definitions are made

c A = _ {(_-; - _x) _} = _ {(_ _ _0) (7 - 70)r}

_" ! = _ ((g0 - _-) (go - }-)r} (8-36)

l cr_ = = _{_ _ (Sx-_x) T}:_:{(7-_0 ) (_-_o)T_AxoA z , t

_, _ =8 {70 - 7) (go - g)T}

% °.'_' zn = " {_--_ gT} __ _ ((_ -- Z0 ) gT} = 0 "

": _ (8-37)

: : c T :F.{_g-_z r}= _(___0)T_ :0 i; 5zn

}

t CA_o_ = _ {(_---_x- Cx)_ T}= _ {(_ - _o) _r} = o ,.
(8-38) ;

Ctax°_ =_(_(_-_-L_x) T}:_ _R(x-x0)T_ =0 _"

,_ Therefore, Equation (8-34) becomes ""

P\x = ¢ {FTWEP5% ET WF + _:-'
(8-39)

+ P-_5 x o CSxo ;_z ET W F} cT '_-,,.+ F 1"WE C_xok " P_lxo ,'.

In Equations (8-37)and (8-38) it is assumed that no statistical correlation exists
,.

between the measurement noise and the error in the solve-for or consider vari-

ables. The correlation between errors in the a priori solve-for and consider

"_ variables CAxo,_ is neglected inGTDS, primarily because a priori values of a
this correlation _matrix are usually unavailable. The terms are maintained in

i Equation (8-39) for completeness and for possible use in the error analysis appli- _

i cation discussed later. In the event that no consider variables are included, _
! Equation (8-39) reduces to
¢

_',_"

p-I 1

i P% : '/' : (FT WF _ A%)- (8-40)

which is the gain matrix in the estimator algorithm (Equation (8-25)).

: r ' " 8-11
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It was stated previously that a desirable quality of an estimate is small d.s-
perslons. It is evident from Equation (8-40) that the covariance matrix of ] :

error in the estimate PA. varies with the measurement uncertainty W - and

the a priori covariance matrix of the solve-for variable uncertainty PAxo" ::
Equation (8-39) shows that PA, also varies with the covariance matrix of un- i.

certainty in the consider variables PA,o" Therefore, minimizing the measure- :_
ment noise, as well as the a priori uncertainty in the solve-for and consider
variables, will result in reducing the dispersion or uncertainty in the estimated _

- variables.

The correlation between errors tn the solve-for and consider variables,

which re_ulLs from the processing, is
>

cA, A =_{(_-_)(70-7) T)

18-41)

? '

= p-i - FT W E %}i _ { A_o Caxo'5" PA

'N

Even if the a priori correlation C_0 A_ is assumed to be zero, a correlation ."# :"
between errors in the solve-for and consider variables will result because of <1 ;:

their dependency in the processing model.

8.2.2 Observation Partial Derivatives )

'7

Throughout Sections 8.2 and 8.2.1, the componeuts of the solve-for and con-

sider vectors x and z have been ignored along with the way the components and

their error covarianc_s PA_ and Ph, are associated with a specific time or
epoch. Furthermore, it has been assumed in Equation 18-14) that the calculated t ..:
measurements at various times (t 1 , t_ .... , t_) can be related to the solve-for , :
and consider variables at the epoch time t 0. In Equation (8-18) itis assumed thatthe

time varying matrices F i and E i can be calculated which linearly relate the cal- '7

culated measurements to variables at the epoch time. In the following section, "_
attention will be focused upon the solve-for and consider vector components, the
manner in which the time dependency is accomplished, and the properties of the .

normal matrix which are utilized in its formation.

The general estimation (solve-for) vector _ in the regression equation , :
(Equation 18-14)) and the est:mator equation (Equation 18-25)) contains variables
from _ in Equation (_-221), i.e.,

b

8-12
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Ys
× q= - {solve-for vector) (8-42)

u1 i

:, tJ

. where

_, _ _ dynamic paramete _, consisting of ttle vehicle's state components at
epoch and model parameters in the acceleration model (Equation (4-1)).

-: _ These parameters include gravity constants, the drag parameter, the
L solar radiation constant, thrust, and attitude parameters.

Ts _ tracking station locations i_ earth-fixed coordinates.

71 b _ measurement biases.

_ t _ measurement timing bias.
/J

The specified components of the solve-for vector are ordered as follows:

• six (or fewer) position and velocity components, R0 and R0, or equivalent
elements

- • drag parameter [,_

• solar radiation parameter k = P A/m 0

• gravitational potential constants /_, _k, C_, and S_ ,i
i

"\ • thrust acceleration parameters a o, • • •, a4; (_0_ • • • _'_3; and _0 _ • " " _ _3

• attitude control parametersax, ay, az; L, _, b=; and cx, Cy, c z

' • tracking station locations
S

• observation biases b and _ t

i Either of the five optional clm_r.acterizations of the epoch position and velocity,
described in Section 1,6, can be solved for. The mean of 1950.0 Cartesian co-

: ordinates Ro and Ro are used for the purpose of describing the method.
?

im
8-13
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Each row of the F(t) matrix iv Eqaation (8-21a) contains partial derivatives
_ of the computed observation _Mth respect to Ro, 1_0 , and the other specified
_ components oi p, r,, b, aud _ t. The dynamic variables p must be related to the :
_ epoch time through tb_ state transition m_" _x ¢(tl, to) as discussed in Chapters
; 4 and 6. Partial _erivatives with respect to Y,, b, and 8 t are not dependent upon

an epoch avd can be obtained by differentiating the observation equation explicitly. _

The nonlinear observation equ _ion is written in Equation (7-1) as

"( Oc = fo [-_lt (t + S t, p, r), rtt (t + _t, p, r,)] + b +RFc (8-43) _;

t

:. whe re

- - _ vehicle position and velocity vectors expressed in local tangent _:, rlt, rlt

coordinates with respect to a tracking station located at _
s

1

,/ i 1tF _ systematic error correction to observation due to atmospheric re-
fraction, light time, transponder delay, antenna mount errors, etc.

,; _1 The partAal derivatives of an observation Oc, at time t i , with respect to the , /,,
: solve-for variables _ are ,_

- - I

; _ _ (t o) :

_ (t_)

- 30c (tJ)_f°(ti) _f°(t') _f°(t) ) _-f°(ti (8-44) t

: --L _ (t) _ ;_¥ ab a_t 1 ,'.1

,. 1 ' :

The first matrix on the right is explicitly determined from the observation equa- '

tions in Chapter 7. The second matrix on the right must be obtained by integrat-
ing the variational equations (or approximations of these equations) as described .
in Chapter 6. Equation (8, 4 0 constitutes a single row E of the F matrix, y ;

On each iteration, the m observations are sequentially processed to form
the normal matrix FTWF. Since the weighting matrix W is diagonal, the re-

cursive relation for accumulating the normal matrix is

W
8-14
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r-_' i

: i

, £ -_T_
"_- i F T WF= J J (8-45)

_2
: j=l j

whe re

[ _T r^ _ _0 ] th
_ Lxi (t J , = {j row oi F matrLx given by Equation (8-44) }i L_j --

, and _. is the standard deviation of the j th obsei_a_on.Jt
h

By forming FTWF row-by-row instead of manipulating the full (m × p) F
' i matrix, a saving in storage and computation time is realized. Since the matrix

FTWF is symmetric, elements be!ow the main diagonal need not be computed
, or stored.

The general co'asider vector _ in the regression equa_on (Equation (8-14))

,: can have as components any model parameters in _, r,, b, or _ t.

i ; ; Each row of the E(t) matrix in Equation (8-21b) contains partial derivatives

": _i u_ _he computed observations with respec_ to the specified components of _. The ,,
partial derivatives with respect to the dynamic variables _, specified in _, can .i."

! be calculated simultaneously with the dynamic partial derivatives in F(t) as de-
I scribed in Chapter 6. However, the partial derivatives in E(t) need only be com-

puted on the _inal converged iteration, since the estimator equation (Equation (8-25))
is not dependent upon E(t).

•"n GTDS the components of the vectors _ and _ are merged on the final

iteration to an expanded state vector _. The elements of u are ordered as de-
scribed above. The observation partial derivatives az _ then calculated with

respect to _, and a (p+q) x (p+q) expanded state norm_ matrix _TWF is ,i
sequentially accumulated as described above. When all m observations have

",, been processed, selected elements of _Tw_ are extracted to form FTWF,
E_WE, and E_WF, which are requlred to compute the covarianee and c_rrela-
tion matrices in Equations (8-39) through (8--41). It _hould be noted that only
elements on and above the main diagonal of FTWF need be ca!culatvd and stored.

8.2.3 Covariance Matrix Transformations

The converged estimate _, covariance matrix I_x, and correlation matrix
CA_A. resulting from the differential correction process correspond to the epocll
time to. Since GTBS can estimate the state in any of five subsets, the first six
components of x can correspond to Cartesian coordinates in L_ean of 19_0.0 or

8-15
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true of date axes, classical Kep]erian oroital elements, spherical coordinates, f !'
or DODS variables. For discussion purlc ses, the first six components _th_ state

components) of _ _re denoted by g. The vector §" can optionally be

iil )
e x 2 ,,

_ 1 3

s= = = _21 = v -:Ix 4

" " Li " L: x,/ _,,no_ t,., of .M_E,p1_,i_, Sph,,i_.l LX6_pODS
_, 1950.0 Epoch Element s Elemec, t s Varisb! es

• depending on the w_.riable set used in the, differential correction process. The _

upper left 6 x 6 submatrix of P_x, denoted P_, also correspond_ _J the variables _
: used in the d_fferential correction process.

"r _ GTDS transforms the estimated state _ and its covariance matrix PA.
: ,,;_ to any or the other variaule sets shown above. The constant solve-for _-

: ) parameters and consider parameters in x and _ of the original differential cor- "

:, ' rection problem &re not coordinate dependent. Only the state (position and " -:
' velocity) depends upon the coordinate system utilized. Therefore, only the sub-

set § of _ and submatrix P_= of P_ need be considered in the coordinate trans- :.
: formation.

. If the sets to :vnich _ and PA, are being transfe.r reed are denoted by g' and ..
P_,, thenonl_mar transformationc,m be writtenas

_" (t o) : h [_(t o) ] 18-46)

Transformationsof thistypebetween Cartesianand spheric_ coordinate_are
pre_entedin Section3.3.4,and between Cart,-_ansad Keplerianelementsin
Section 3.3.8.

To transformtb._cova,'iancematrix P._, Ec_uadon(8-46)is line_-_zed,
yielding

As' (t_) -- H(t o) As(t o) (8-47a) .

wkere .,

( -_"s-E--) (8-47b) />H(tr,) -- \ ,_
t:t 0

g

8-16
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These partial derivatives between Cartesian and spherical coordinates and
_artesian and Keplerian elements are presen_d in Sections 3.3.4 and 3.3.8,

" 1 respectively. The cowriavce matrix PAs i_ defined _:-

;: _ PAs(_O) = _ [_'s(t o) - A--S(to)] [/_(t o) - _S(to)] T) (8-48)

where A"s and A-_ correspond to the first six components of _'x and A-'-x,defined
• i previously. The covariance matrix of transformed variables PA,, is defi_ed :

as

PA_' (to) : _{ [_s' (to) - As'(to)] [_'s'(t o) - ,-qs'(to)] T} (8-49) ;.

•

: i Substituting Equation (8-47a) into E_-mtion (8-49) yields
J 1

;/ i PAs'(to)= H(to)P/ks(to)HT(t0) (8-50)
i t p U

A second type of transformation occasiGnally encountered concerns th_ i

; I tlmewise propagation of the estimate _ _nd the covariance matrix PA_. The

i estimate x(t0)_ --istransformed timewise by me_-e!y integrating the equations of i
motion from initial conditions x(t o ) to other times of interest. The best estimate
of all model parameters is used in this integration. :_

The timewJse propagation of the covariance matrix of state and model . -
parameters is slightly more complicated. First, the propagation is separate
from the differential correction process, and model parameters other than -_-

those estimated (solved for) can be considered as uncertain in the propagation

.,,_ process. The a priorivaluesof theuncertainstateand model parameters
(whether solved for or considered) a_ epoch time t o are denoted by u(t0) and #

: their covariance matrix by PA (t0). At any later time t, they are given by

_ _-_

I ' t

,_ x ! _

_ F,-1 I ,

L ,J ! ....
' _ a : _ and PAu = "" ;

LCAx A, , PA%

:. _ 8-17 ii
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:: It is assumed that _ and P_ are composed of state components s and uncertain
i_ model parameters u*. Perturbations about _(t) are related to perturbations about

the a priori values as follows

i A--_(t) _(t, t o) 7_u(to) (8-51a) .:
: `:, where the transition matrix _ is given by

[t0tot
: ¢(, ) d(t, t o :

;: ¢(t, to) = - (8-51b)

with

• = f 8"_(t) _ (8-51C)
._ *(t, to): (_s(t)_ and ,_(t, to) \_,(t0) j\?S(to)/

, jl-

,, _ By definition, the covartance matrix of fi at time t is

:,, PAo(t) = [_'u(t)-,-SGu(t)] [_,(t_ _-"uu(t)] _'} (8-52) .,-

Substituting Equation (8-51a) into Equation (8-52) yields

; P6u(t) : ¢(t, to) p_°(to) cT(t, to) (8-53)

The covariance matrix of state (upper left 6 x 6 submatrix of PAu) is obtained *
by partitioning ¢ and PA, into their _ and fi* subparts as follows

\\

: PA.(t) = ¢(t, t o) PA_(t0) cT(t, to) + _(t, to) CI ¢TAs Au* (t, to)

(8-54a)

+ @(t, to) C_A,s _u* _T (t, to) + L' (t, to) PZ_u,o_T(, to )

s

If no uncertain model parameters are Included in the propagation, Equation (8-54a)
reduces to

: PA_ (t) = ¢ (t, t o) PAs(to) (_T (t, t o) (8-54b)

L

8-18
' REPRODUCIBILITY OF TIlE

ORIG_AL PAGE IS POOR

}

1976017203-396



"- | A

"- _ ' } From the same pa_'titioning, the correlation between the state _ and fi* is given .;_-
by

J

CAsau , (t) = _(t, to) C_,A_, + 9(t, to) Pa_. (8-540)

4

i 8.2.4 Computational Procedure for the Differential Correction Program i

" This section describes conceptually how the estimator and covar_ance equa-

: tions are solved in GTDS. Figure 8-1, the comput'_tional flow schematic, will aid _,
in the discussion. The figure is divided into functional blocks and the discussion
is similarly organized. The logic shown in Figure 8-1 is not _he same as the !'
specific source logic in GTDS, but is presented in or_lcr _ characterize the
concepts.

t; ,
_ 8.2.4.1 A Priori Input

; The process is initialized by specifying all necessary input data at _

: This includes the estimated _nd considered variables and their covariances, as _'
1 well as measurement time spans and times to which the best estimates of the _

; sCate and covariances are to be propagated. _J.'hestate input _ _ptionally ex- _ '_

i pressed in any of several convenient coordinate systems. It is transformed to ':
the basic coordinate system used in GTDS (i.e., mean equator and equinox of

• 1950.0 or true equator and equinox of a given epoch) for subsequent processing. :_
.:: T_ese transformations are described in Chapter 3.

8.2.4.2 Data Management

The next step is the preparation of the observation data for l_rocessing at
(B_. This encompasses relocating the data within the specified measurement "_

\\ _span from the original input device (cards, singl, _, or multiple tapes, disk, or
_: keyboard) to a working file convenient for subsequent retrieval during processing. '_
; During this relocation function, the data sequence can optionally be edited con-

_ sidering the type of observation, the source of the data, the tracking station, and the
: time span between adjacent points. The data on the working file are chronologi- ";_

: cally numbered, and the number of the data point which bounds the initim epoch
time t o from below is recorded. The data m_agement function also includes

' the determination of whether the initial epoch time is less than the first data

time, between the first and last data time, or larger than the last data time.
_: For the first case, the data are processed sequentially from the first point at

t_ to the last _clnt at t m. For the second case, the processing starts backward

1_i 8-19 _"
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tLJ in time irom the initial epoch to the first data point. £t then switches back to the

:, initial epoch and proceeds forward in tSme to the last data point. In the third
+ case, the data are processed backward in time from the last (chronological) data

point to the first data point.
v

I

: 8.2.4.3 Outer Iteration Locp

® ©" The o_r iteration loop begins at ' or . Normal GTDS operation

starts at C_ with initialization of the inner processing loop point counter j and i
subsequent integration of the ephemeris from observation point to observation

point within the inner loop (at (_)) An al_rnati_,scheme, planned for the +i
• standalone DC Program, beg2ns_he outer loop at (E) ' by calculating and storing :

the ephemeris and state transition matrix over the entire DC time span (To to

•I T_ ). Later, in the inner loop, the state_d state transition matrix are obtainedby interpolation of the stored data (at _)).

8.2.4.4 Inner Processing Loop

i The inner processing loo]p_tarts by retrieving the first data point to be processed
from the working file at _. Under normal operation, the nonlinear equations of
motion (see Chapter 5) and associated varia,+ional equations_ee Chapter 4) are

: : numerically integrated (see Chapter 6) to the ,_ata time at {E ). Alternatively, if q

+:' the ephemeris and state transition matrix are g_uerated_ an_d'_stored at (_', their
values are interpolated to the observation time a_ (F). The best estimate of _he +

-£--VVj "J; ! measurement and its rel_edresidual are calculated (see Chapter 7) alon_ !
with the single row aj of the F matrL uorresponding to the measurement ate).
To minimize core storage, the matrLx products FTw_'y and FTwF are accumu- I

! lated as each row of F is calculated, as dc,_cribed in Section _.2.2. It is apparent
from Eq,Jation (8-25) that only these matri× products are required for determin- i},

\,

"_ : ing the estimate. All symmetric matrices __,g., FTWF) are stored in upper tri- '
angular form. On the last iterat=on tl,e matrix products FTWF, ETWE, FTWE,

and ETWF are accumulate_.for subsequent use in computing the covariance and
= correlation matrices. At _ tests are performed to determine Jf all m data

points have been procesc+ed. If they t:ave not, the meesurement point counter j
is incremented or decremented, depending on whether the data is being processed
forward or backward in time, The logic then returns to the beginning of the
processing loop to retrieve the next, point to be processed. 0

,
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8.2.4.5 Estimation Computation

When all m data points have been processed, the complete matrix products

FTW and FTWF are available at Q as is tlle measurement residual vector _'y. _
On thelastiterationFTwE, ETWF, and ETwE are alsoavailable.The best _A

estimate of the perturbations A x +x and variables are then calculated via

Equations (8-257 and (8-26) ate. xi+z

8.2.4.6 Termination of Outer Iteration Loop

; After determining an estin!ate at _, the iteration is complete and conver-
gene _ tests are performed at _. The convergence criteria are described in
Section 8.6.3. If the iterations are converging, the iteration counter i is tested

, againstthemaximum number of iterationsallowable.Ifthemaximum has not !

_ been reached, the iteration counter is incremented and logic proceeds through '
._ ,_ to begin the next iteration at _. At __L_ the measurement residual vector
, can be used to edit the data as discussed in Section 8.6.2, as well as to determine

iteration statistics as discussed in Section 8.6.4. If the convergence test at
:' "_-- determines that divergence is occurring, the problem can be terminated. If the / :

, iteration has converged, or the maximum number of iterations has been reac_ed,
then the covariance and correlation matrices at epoch t o are calculated at QM).

:: Finally, the state vector, the covariance matrix, and the correlation matrix can i
:' be transformed to other space and time sets as described in Section 8.2.3. :.
"- f

8.3 ERROR ANALYSIS APPLICATION

The weighted least squares estimator algorithm and the associated covari- i
._anc_ and correlation matrices, derived in Sections 8.2 and 8.2 1, are summarized ._,

\ as follows.

Estimator
q

Axo _.

S

t
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' I! Covarianceof Estimate '

PAx :¢,[FTWEPA% ETWF+FTWEC T p-1....,,. AXoAz Ax° a

• + p-1L_,xoCAxoA-ET WF �FTWF + p-IAxo] ,_,T _ ; ',_,

,
", Correlation of Estimate and Consider Variables

: CA"A" :_ P oCAxoA_-- FTWEPA, ° ?

whe re

p-1 j-1 (8-58a)
_: [FTWF+ Ax°

Ph,x0 : _ ((_o - _) (_0 - R')T) (8-58b)
F,

] PAx : _ {(_ - _) (_ - _)v} (8-58c)

PA, ° : _, {C70 - 7) (7 o - _-)T} (8-58d) "i

CAxoA, = _ _(_o- _) (_o - -_)T) (8-58e) _:

C/_xAz : _ ((_ _ _) (T 0 _ _)T} (8-58f) :

(_ is the converged xi) _ '_
I

In Equations (8-55) through (8-57), only the estimator requires measure- :_.

ment data. The equations for the covariance and correlation matrices require ,:-;
only the statistics W of the observations, which are usuaUy known for specific )
classes of trackers and sensors. Therefore, if it is assumed that the a priori ,_
reference trajectory _o is the best estimate, the estimator equation can be :_

omitted and the covariance and correlation matrices can be determi_md for spe- :,
cific mission sensors and observation profiles. It must also be assumed that ," ._

the mathematical models in the program accurately characterize the physical
sitta_tion. Since actual measurements are not required, these operations can be
performed during preflight studies to determine:

I

,_ 8-_.3 ',_
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' 1: • the effect of measurement data errors (random and systematic), measure-
: ment time spans, and sampling rates on the accuracy of the estimated

state and model parameters
r

• the effect of the trajectory dynamics and the trajectory/sensor relative ,!
geometry on the accuracy of the estimated state and model parameters

• the relative effects of different types of measurements on the accuracy

• of the estimated state and model parameters

Such pr._blems are referred to as error analysis problems, since they are
) solely concer_cd w_th the influence that errors in problem variables have on the

accuracy of the estimate. This type of analysis can strongly influence the design
and enhancement of spacecraft missions, as well as establish requirements for -_
observation sensor accuracies, sampling rates, tracking times, and sensor

J locations.

_ The method for evaluating Equations (8-56) and (8-57) in GTDS is nearly
_ ' identical to that for estimating applications. An a priori estimate of the solve-

_ for and consider variables x0 andz0, along with their covariance and correlation •

matrices PA_0 , PA_0 and CA_0A_0 is specified. The measurement schedule and .// _!
measurement uncertainty W is also specified a priori. The program then pro-

ceeds to integrate the nonlinear differential equations of motion and their corre- I
spending variational equations to the measurement times and compute the

|

measurement partial derivatives. The rows of the matrices F and E in Equa-

tions (8-56) and (8-57) are accumulated as the measurement statistics are
processed. Ultimately, the covariance and correlation matrices PA_ _md C A_A=
are calculated at the epoch time. The covariance and correlation matrices are

: then propagated to specified times T1 , T2, . . . , Ts by means of Equations (8-51)
and (8-54). Analogously to the transformations presented in Equatiom,_ {8-46)
through (8-50), the time transformed covariance matrix PAs (Tt ), which is a !

"_ submatrix of P_(T i ), is itself transformed to the-s v system. From the non-
linear transformation _

_' _Ti) = h [_(T i)] (8-59) ,,:

a linearization yields "_

As'(Ti) = H(Ti) A'-_(Ti) (_-60) _,
r

where

(8-61) ],

"(Ti ) --x-,-k'_'/tTi "• t

! .,

8-24 I. ,',

"[9760"[ 7203-403



The covariance matrix of _'(T i ) is thus formed by appropriate substitution as .:

: H(T i ) PA.(Ti ) HT(Ti ) (8-62)

The correlation CA.Az(T i ) is transformed to CAs,A. (T i ) _ follows _,_

CA,'A,(Ti) : _{[_'(Ti) - s'(Ti)] _o - ¥]T) ':,

--_( [_"_'(T_)- _" (T_)]_o - _ _') '(8-63)

= _(H(Ti) [A_(Ti) - A"=s(T,)] [Eo - ¥]r} '"

= H(.Ti ) CAsAz(Ti )

Since the estimation equation is ),ot being solved, iteration is unnecessary.

; Differentiating Equation (8-25) with respect to _ and ignoring both the iter- :-
ation notation and the _ dependence on the matrix of observation partial deriva- ../.'i

_" tives, the variation of the least squares estimator with respect to the consider ":" :

parameters is i

= _ (FTWF + p-1 )-1 FTWE (8-64) ."
_- A_o

Within the bounds of linearity, the responsiveness of the components of _x to ,!
perturbations in the components of _ are given in the epoch sensitivity matrix

?,Sx_ (8-65) _ ..
,i, S=\W /,,_j ,, ,,

L

From Equations (8-51) for the state vector -_, the perturbation about a given value ! *':
of s ts

As(t) = ¢(t, to) AS(to) + (_(t, to) _* (8-66)
,,.%

Differentiating A s(t) with respect to-u*, the variation of the state components with ,, ;_
" respectto theconsiderdynamic parameters isobtained ,

^ V a78_s(t)_¢(t, to) + O(t, to) (8-67)
_" L_'J

c

: 8-25
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I
Then the time propagation of the matrix of lunctional sensitivities is

s(t) = t) (8-68)

I

As in the transformation of the covariance matrix from 1_, to P_,, a s_mple
chain rule calculation yields the variation of the transformed state with respect

- to the consider variables

To give more insight into the applicabilityof the sensitivity quantities, the
i th component of the least sqaares estimator As is written in nonlinear functional
form as

A_i = _i (_) (8-70)

_ By expanding gi (z) in a Taylor serie,-_ about z = z0, the following first-order
i; approximation is obtained /",

(8-71) (
J

If the errors in the 7 parameters are uncorrelated in a Bayesian sense (as they

are assumed to be in GTDS), and if the linearity assumption is valid, an estimate

of the variance of _s i due solely to the variability in-z is obtained. In particular,

this varrance estimate is given by invoking the variance operator on both sides of

the above expression for A s i and noting that gi (zo) is a constant and that the
A_ 's are uncorrelated. Therefore,i

-%

: I'--, k"" \2

__E(o,,,,/o'aA_ (_) _ _ (8-72)

j\

Assuming the lieearization is valid, it is easily seen that/_ z) = _._ .in the sensi-
tivity ar,alysis. Hence, the sum of squares of the sensitivities fo:- a_given s+.ate

i component over all consider parameters plus the excess of the (i, i) elemen,: of "

the consider covariance of/_s over _% (z) yields the total variation observed"_ i

in _s i. This excess quantity is the (i,i) element of the normal matrb: (measure-
meat noise variance component) since the covariance equations were derived

under the assumption that B and'z0 are uncorrelated, thus uncoupling their effects
: on variauce e_timation.

: i
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"•- It would appear that since an estimate is not actually being determined, it
' should make little difference whether model parameters are associated with the
, solve--for vector _ or _he consider vector _.. A subtle difference does exist,

however. Components of the consider vector _. are maintained at their a priori
specified values throughout the processing, and therefore have no possibility for
modification through estimation. As a result, their covariances never differ from

_ those initially specified, i.e., P/_z0 in Equation (8-56). The solve-for variables
_ _ have their values continually modified through the estimation process, which is

_ reflected through the changes in the variance elements in PAx • Because of the
coupling, the unce_-tainty of the state components is affected differently if the

_ same model parameter is associated with _ rather than with _.

b-

8.4 SEQUENTIAL ESTIMATION

.i

_ In the approach taken to the basic orbit estimation problem in the preceding
sections of this chapter, the ubservations are processed by classical least squares

methods, i.e., by processing the data in batches. The solution to the problem is
_ the state vector (the system parameters or unknown constants) which is estimated ,

from a set of measured data. Since the problem is nonlinear, the solution is lin-
earized about the a priori state estimate and then iterated +.ominimize the loss
function. This approach requires considerable computation time and cannot be
applied to real-time situation_.

An alternative appror,_h is to perform the data reduction and parameter esti-
: marion in a sequential or recursive manner. The process is begun by making an

|,nitial estimate of the state vector from a minimum data set or from a judicious
guess. Each new data point is combined with the previous parameter estimate

by appu'opriately weighting the data point to give an improved estimate of the state.
: This process is repeated as each new data point is reduced. Hence, the procedure

_\ can be interrupted at any time and the best estimates of the system parameters

: and their uncertainties based or, all accumulated data to that time are known.
: Other _ivantages of sequential weighted least squares estimators are that at '

each sLep the calculations are fixed in size and format and that the need for stor-

ing previous data points is eliminated. Under certain assumptions the sequential
weighted least squares estin'._+._r _._ identical to the "Kalman" minimum variance

! esflm:_tor. Additional discussion of sequential weighted least squares and mini-
_ mum variance estimation can be found in Reference 2.

- _ The Extended Kalman Fdter is the baltic sequenLial estimator in GTDZ. Its •

k

derivation from recursive weighted least square_ is discussed in Section 8.4.1. _,
_, Because of the sensitivity o_ Kalman filt_rs to dynamic model errors associated _
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; 8.4.1 De.ri,;ation and Applications of the Extended Kahnan Filter

T

.i In reconsidering the weighted least squares problem described in _ection 8.1,
an m-component observation vector _ is assumed. The nonlinear regression ;_

., equation (Equation (8-1)) is linearized about a referenc_ _te x0 as shown in ;
Equation (8-7). The best estimate _, it_ the classical weighted least squares sense, _"
is given by Equations (8-10) and (8-11) as

- + (8-73)._ m

; _ where

'Ax = (FTWF)-x FTW_y (8-74)m

The subscript m indicates that the solution is based on an m-component obser-

vation vector, and the quantities F, W, and _-_ are defined by Equations (8-6),
(8-12), and (8-8), respe.etively. K one more observation is included, the correc- I
tion has exactly the same form,

i _xm (F'_'F')-_ F'Tw'_'_ (8-75)

where F', W', and Ay, are related to F, W, and 5y as follows

F IIIW _ ;*

",. F' = , W' = .... , _ = .... (8-76) .i

\ 'w 11 _'*, _+ [_Ym+1_.J

and F + _, w + x' and/x y_+ _ correspond to the (m+l) _t observation. In other ' -
words, the original matrices a_d vectors are augmented to include the next
observation.

Substituting Equation (8-76) ._nto Equation (8-75) gives
°1

= ' _ - - - [F T, Fro+ I]_x FZ,FT I : r (8-77)

?

,,_.
8-28
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:, i The quantiLy in parentheses in _.quaiion (_J-77) is the inverse of the covariance :

_j ,, for the weighted lea_t squares estimate Hx m+_,i.e.,_ matrix of error P_x +_ .

= (FrWF + Fr+lWm+1 Fm+l)-I (8"78)
P_xm+ I m

However, FTWF is the inverse of the covaria_ce matrix PAx , which is ba_ed on '
m

; m observations. Therefore,
r

P_Xm+l = (P_Ix T ". . _+ xW_+ie_,i)-l (8-79)
.

Equations (8-77) m;d (8-79) are expressions for the state correction estimate and _.

: the covariance of the error in the c_timate olc.ainea by processing (re+l) obser ca- _,

tionB. These expressions can be written more conveniently in the following
reeursiw form

5x +i =Sx +Ax (8-80a) f

._ (S-S0b)
" = PAx +LP
; PAxm+ 1 m

II

: _ /N S t a'

• where 5 x and A P represent the changes in /',Xrnand PAx camped by the (re+l) "
" observation. This form allows the slate vector and covarlance matrix to be de-

termined as each observation is sequentially processed.I
., As shown in Appendix __.',Equation (8-80b) can be written as ,

Pa.+1=Pa. - PA.mF;+I[,_:'_1 +F +,P_.mFTm+']-I _'n+'PHxm(8-81a)
or

PAxm+, = PAxm- KF+'PAxm = (I - KF+I) PAxm (_-.Slb)
where _ :

,°

_ Fm+1[wm+1 + Fm+iP&xmF_+,]-1K p_, r -, 18-8,c)
"_x m "

Substituting P_xm+l from Equation (8-81b) into the first term on the right of "
Equation (8-77) yields

A"_m+l = (I - Kl_;+l)P&x _'TW_y + F_+lWm+I/3Ym+lJ (8-82) l

Rlihm'#"{f,,'HnmlT'n,,n_nn_ t_-74_ and (8-81b)into Equation (8-82)yields "

_" = 1" F T (S-_.q)
£xm+, (I - KFm+t)_x m+ P&'m"t "+lWm+I&Ym+'

I
' 8-29
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In Appendix E it is shown that

K=Fax, F_,lw,1 (8-84)

Therefore, Equation (8-83) can be written as

-"- ,x (8-86 _ :_
_Xm+ 1 =-Axm + K[AYm+1 - Fm+IAXm]

. Summarizing the above results,

:" x+l = _o_ aXm+l (a)

A'Xm+I - A_ 4-K [AYm+I _ F+IAxm ] (b)
(8-86)

= KZ,.+,pAx <: KFm+,)p_. (c)PAx 1 PAxm - = -m'l" m PA

• ") T -I (d);' t _--PAxF:+IEwe:,+_+,PA_rm+lJ

I m I,I

: where +
J

., ",- -I B_-m+ .j
Fm+1'-. __ ,

\ Bx 1(+= Iand ;o) .

Aym+I ~ theiinearized(re*l)stobservatio:i(seeEquation(8-8))

w_+I, _ the variance of the (re+l) st observation, e.g., c_2 _
" m+l

The.precedingreoursiveformoftheweightedleastsquaresestimateyieldsthe
update equations for the Extended Kalman Filter in GTDS. The weighted )eas*. i

squares estimate is a minimum variance estimate because the observations are _
weighted with W = l[cr2. This is the condition necessary for Equation (8-78) to

.,, be the covariance matrix of error. The matrix K is defined as the Kalmar. gain.
For additional discussion of Kalman filter theory, see References 6, 7, and 8.

q,,,

T in Equation (8-84) is a matrix whose elements are allAssuming lhat F _+1
unity, then each element of the gain matr+x K is a ratio between the statistical

measure of uncertainty in the state estimate PAx+t and the uncertainty in themeasurement _2
m+i ' j,

From the fundamental definition of the covariance matrix given in Equation

(8-34), a more convenient form for PA_+ 1 can be derived using Equation (8-86b)

, 8-30 REPItO1)UCIBIIXI_ 0F THE
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I! - PAxm+l - _.{_Xm {[(I _ K_ �¼�_Xm+ I_Ym �I]

• :lj x [(I - EFt+l) A'_m'" + K_Ym+l IT} .:• = 8{[(I - KFm+I) Ax m + KAYm+1] ,'_X_T(I - KFm+I)T .

T t
! + [(I - KFm+I) Ax m + K_ym+ 1] t_Ym+lKY} (8-87)

.l >
"'_+ l -- (I - KF+I) _{_Xm_X-r} (I - KFm+')T + K_(AYm+I_'XmT) :

1 •x (I - KF+t)z + (I - KF+I ) _(A'xAYmT+I}KT

+ KSIA3,m.,. 1Ayli +1} Kr

: i Assuming uncorrelated measurement errors, then _:

-| ._.

'#I" _ {AYm+IAxmT) = _ (_XmAY-T'I} = 0 (8-88) :
+

I

_ By definition , , /""_:

+ _ {AXmAXl} = PAx (a)
I m ; :,

' ' i and (8-89) + _"

• " _ {Ay.,+iAymr+t}= w:Ii (b) i

! ,
: i.

SubstitutingEquations(8-88)and (8-89)intoEquation(8-87)yields I

t

_: , PAXm+' = (I - KF+,) PAxm(I - KF+,) "r + Kw:ItKT.. (8-90) ',! .
\ ,

., Equation (8-90) is preferred over Equation (8-86c) for the following reasons: "_ -
; ., To firstorder,itis insensitivetoerrors inthefiltergain,and itisbettercon- _. .:

7.
ditioned for nm_er_cal computations, since it is the sum r,f two symmetric non-

_ negative definite matrices. .

Up to this point the effect of adding ene more observation to a set of m
observations has been considered. These results will next be generMized to

indicate sequential estimates without dependence on the size of the, observation _i

i, vector, that is, j will represent the observation counter, replacing m in th_ .'+.
subscripts. , ,+

_ The prediction formulas for the Extended Kalman Filter follow from the +'
discussion in _ection 8.2.3 concerning the timewise propagation of state per-

,. turbations (Equation (8-51)). Including the state noise _ with zero mean and :
_ covariance Q, the prediction equation can be written _:

"_ 8-31)
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: Ax(tj+ll tj) = ¢(tj+ll tj) Ax(tj Itj) + _j+_ (8-91)

: where Ax(tj _1 I tj) denotes the best estimate of the correctiop, at time tj+ 1 based
on processing data through time t j, and ¢ (t i I t i ) is the state transition matrix. ,'

For prediction purposes, the state noise _ *t in Equation (8-917 is set equal to , :

zero. The predicted covariance matrix at time ti+ _ is obtained from Equation
(8-91) as follows

PAx(tj +11tj ) = 8 {A_x(tj +1 ]tj ) AxT(tj+ 1It] ))

C /x /,,

'- = _{[¢Ax(ti]tj) +_j+l ] [¢Ax(tj Itj) + W-j+lJT} (8-92a)
/N A

--T= 8 {[¢_(tj It i ) + _j41] AxV(tj It; ) ¢_" �[¢Ax(ti [tj ) + _j+l ] _j+l }

: ¢8{_x(t i It i) AxT(t i [tj)} CT + 8{wi+lAxT(t j [tj)) CT '1-

; _ + ¢_ {_x(ti Itj ) o_j+li-v + 2 (_i+t_hI+x) '
;

A ' 7/ "_

: _'- Assuming that the noise _ and the state Ax are uncorrelated, Equation (8-92a) ,/
: becomes

-. pAx(t]+l[_.: _ : CPA(t i iti) ¢T + Qj+_ (8-92b)

where Qj+I is _he ccvarisnce of the state noise, i.e.,

:" +IWj 41 } (8-93): Qj+I 8{_j --T

In order to use this formulation of the E_ended Kalmm_ Filter, a refeIence tra-

jectory taust be generated. This is done by numerically integra:ing a ;_onlinear

., second-order differential equation (see Equation (5-2)) of the :orm

Xref(t ) = g(-x, t) (8-94) , _,

where _ is a known function of the stah_ variables, _ is an n-dimensional state

vector, R(t0) = _ 0, and t > t 0.

The predicted measurement residual error r(ti+_ It_) is '

'_ r(t_+_itj) = y(ti+t) - F_+ _¢(tj+_ltj) (8-95) ,

where _(t i+_ Its) is obtained from the integration of Equation (8-94) with the ini- _

tial state for the integration obtained from the previous state updated by Equation

' (8-91), and the predicted measurement residual u_certainty Y(t_+_ i ti) is _:

8-3_.
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Y(ti_xltj)= _(r(ti+,lti)rT(tj,11tj)}--Fj+iPAx(tj+11tj)F_+I + w_+XI (8-96) l

A comparison oftheseresidualswiththeirtheoreticalstatisticalproperties
provides a means of judging the performance of the filter (cf. Section 8.6.4). ':

Equations (8-91) and (8-92b) are used to predict the state correction and '

covariance matrices at a future Lime ti+ x, based on the best estimate at the
last observation at time tj. Th,_ next measurement y, +1 is then used to update
the sta_ correction and covarlance matrices (Equation (8-85)). These steps
are repeated until all the observations have been processed. The advantage of
this recursive estimator is that the estimate of the state and covariance based _.

i on processing m+l observations uses the information contained in the (re+l) st
_' observation plus the state and covariance based on m observations. The entire
! process of accumulating sums and inverting matrices does not have to be re-

, peated when a new observation is processed. The error covariance of the filter :.
is inversely proportional to the measurement noise from Equation (8-79). Large

: i measurement noise implies that _. "s small, and hence P_*a decreases by _.
. only a small amount. Small measur_nent noise implies a large w_ 1 , and con-

" I sequentlya relativelylargedecrease inP_+I • _ _.

_- The recursiveequationscan be appliedfrom thefirstpointon. In thatcase,

_ the reference trajectory is chosen as X(to) = x0, the a priori state; hence

I E_(tvl to) = 0. There are two ways in which the Extended KalmanFilter may be
used, with an updated or a nonupdated reference trajectory. In the nonutx_.ated
reference approach, the corrections Ax are accumulated, and the a priori ref-

eren_ e state _0 is corrected only once, at the final time after all data are
, processed.

The updated state vector at the final time, based on processing all the data,
is then smoothed back to the initial time to obtain the best estimate of the state _ -_

at all intervening times. The covariance matrix can also be propagated backward ', ;
,\ in tim_ via Equation (8-92b) to obtain the timewise variation of the uncertainty of :

• the state based on processing all data. , ._

If the batch of observations is s,ffficicntly large, a new initial reference state
can be determined from the following equation

A (8-97) _ ;"_'(t0)=_(t0)+Ax(to]tf)

where '
A

/a x(t0] tf) "_ the '_,_wbest estimate of the state at to based on processing ,_
_ all observations

_ t_ _ the time of the final observation ,
• _'_ _ _ ,_

_" 8-33 "
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This reference state will be closer to the "true" initial state than will _(to).

Using the new state, the data are reprocessed, i.e., the solution is linearized about
_'(to), and the filtering proces_ is repeated over the same batch of observations.
This process is repetitively applied until there is no change in the initial refer-
ence state. At that time, convergence to the best estimate of the state has been
achieved, i.e., a solution has been found which is as close to the "true" solution a

as the neglected nonlinear effects will allow. These "global iterations" involw
the same procedure as that which is followed in the batch processor (iterated

• weighted least squares). This mode is _,sed w4_enthe signal-to-noise ratio is
small, and a good initial estimate of the state is available. The nonupdated refer-
ence approach is not presently available in GTDS.

Another approach (used primarily when the signal-to-noise ratio is large or
: when a good estimate of the state is unavailable) is to update the reference tra-

jectory after processing each subset of the data vector _. This allows large
errors in the a priori state _0 to be corrected early in the process, thereby

J

assuring that the processing of later data satisfies linearity. This, in turn,
improves the ou_r loop (global iteration) convergence. Linearization about

_(t0) results in AX(tolto) = 0. Hence, using Equation (8-91) and relinearizing
• _, about each point yields /,"

/_x(tltj)= O, tj _<t_< tj+ I, for all j (8-98) I
Since, due to the relinearization,

: Ax(ti+lltj+ 1) : _(tj+lltj+ I) - x(tj+,lt i) (8-99)

substitution of Eq'mtions (8-8), (8-98), and (8-99) into Equation (8-86b) gives

, ?_(tj+llt_+ 1) = x(ti+llt j ) + K(tj+ 1) [y(tj+ 1) - f (x(tj+lltj); tjj 1 ',] (8-100) -
• ,

The preceding result is used for updating the state vector. The updated reference
mode is ideally suited to real-time applications.

The Extended Kalman Filter for continuous-discrete systems described above
is the result oi the application of the linear Kalman filter to a linearized non-

linear system, which is relinearized after each observation. To summarize, the

procedure for the updated reference mode in GTDS is as follows:

1. Store the reference state x(tj 1%) and the covariance matrix PAx (tj I tj ). '

_ 2. Compute the predicted state at time t.+. by numerically integrating
Equation (8-94), i.e., obtain x(tj+lltj) given x(t_ !ti).

8-34 RF2RODUCIBILITY OF TI{I_
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: 3. Calculate the state transition matrix from time tj to time t j+ 1 , either ]
analytica!ly or numerically, as discussed in Section 4.10.2.

4. Compute the predicted error covariance matrix at time ti+ I via
Equation 18-92b).

P_x(tj+lItj, =,(ti �1,tj)PAx(tjlti)*T(ti+ 1, ti) +Qi "

5. Compute the observation vi _ P,q_,.tion (8-1) assuming no noise.

y(tj+I)--f(x(tj+iItj); tj+I)

6. Compute thepartialderivativeoftheobservationvia Equation(8-6).

; Fj+I= I

:_ =_(t j+ 1 [tj ) _'""

} 7. Test whether this is an acceptable observation, i.e., is the absolute
value of the residual (observed minus computed value) less than the
RMS multiplier times the square root of the predicted measurement

residual uncertainty Y(ti+ 1 I ti) in Equation (8-96)? If not, reject
the observation, increment j, and return to Step 1.

8. Calculate the filter gain matrix via Equation (8-86d)

T _Fi+lPAx(ti+llti)F T + -I -I i ,.. g(tj+I)= PAx(ti+11ti)Fj+I i+I wj+l] , '

9. Process theobservationy(ti+I)to obtaintheupdatedstatevia
Equation (8-100)

x(ti+llti+ 1) = x(ti+llti) + K(ti+ 1) [y(tj+ l) - f'(x(tj411ti); tj+l)]

10. Compute the updated error covariance matrix at time t i+1 via
Equation (8-90)

t

Ps.(ti+11ti+1)= [I- l((ti+I)Fi+I]PAx(ti+1[ti)[I- K(ti.t)F.I]T

+ K(tj+ 1) w_I1KT(tj+ 1)

8-35
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11. Increment j and return to Step 1 to repeat the cycle for the next

observation.

12. Continue the cycle between Step 1 and Step 12 until a specified set oi ._,
observation data is processed.

13. Integrate back to epoch and output the results utilizing data to time tf, _ •

e.g., x(t o itf) and PAx(t0 Itf), where tf represents the time of the final _
data point in the set of observations processed.

" 14. Continue the cycle between Step 1 and Step 14,until all the data are :
processed.

15. Make a final pass through the observation data to compute residual
statistics and print final reports.

One of the main difficulties associated with the filtering approach to orbit
determination is filter divergence, i.e., the estimated (filtered) state diverges

- J from the actual state. It can occur when estimates of the state become more

; accurate and hence the covariance becomes smaller. As a result, the Kalman
i gain decreases and new observations exert less influence on the solution. The

j observations, which are a realization of the true state, have a smaller effect than ,,'_
the "learned" dynamical model. Therefore, successive estimates of the state tend ,1
to follow the erroneous "learned" dynamical model and to diverge from the true
state which is reflected in the observations. Consequently, the estimated covari- I
ance fails to represe_ the true estimation error.

Divergence can arise from the _ollowing sources:

1. Lineariz ation errors (e.g., measurement linearization) •

2. Computational errors (e.g., PAx lo3es its positive semidefiniteno_s)

3. Modeling errors

4. Unknown noise statistics .

Generally, the first source can be minimized by iterating the solution (updated
reference trajectory). Computational errors can be minimized by square root
filtering algorithms (Reference 9) and program ceding techniques (Reference 10).
Modeling errors can be handled in either a nonadaptive or an adaptive manner. _

The nonadaptive m, _hcds modify the filter structure in order to maintain the _

!_alman gain at some statable level for sustained filter operation. The Modified ,
Extended Kalman Filter (MEKF) by Torroglosa (Reference 11) implemented in
GTDS is a filter of this type. The adaptive techniques can be divided into struc-

tural and statistical methods. The structural or dynamic model compensation
methods are designed to adaptively estimate the true value of the unmodeled

8-36 "_
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acceleration along with the state. Tapley and his associates (References 12, 13 :
and 14) have followed this approach, which will be discu _ed in Section 8.4.2.
The statistical methods are designed to correct the basic filter to accommodate
the combined effects of all error sources, e.g., the neglected nonlinearities,

unlmown noise statistics, and computational error effects, in addition to the _

model errors. The Jazwinski Filter (Reference 15) in GTDS is a filter of this i _
type. Statistical adaptive filtering is discussed in Section 8.4.3.

8.4.2 Dynamic Model Compensation Filtering

The dynamic model compensation (DMC) techniques are designed to adaptively
estimate the true value of the unmc_leled acceleration along with the state. A _
sequential estimation method has been developed (References 12, 13, and 14)
which compensates for unmodeled effects in the differential equations which de-
fine the dynamical process. The advantages of this me'_hod are: (1) It can be

• _ used to obtain an improved estimate of the sta*.e vector in real-time applications, :
and (2) it yields information which cmt _ used in post-flight analysis to improve

: j the basic dynamical model. The unmodeled accelerations are assumed to be a _:

I first cider Gauss-Markov process, i.e., they consist of the superposition of a _
" time-correlated component and a purely random component. Because this type _.

of filter is not implemented in GTDS at the present time, the discussion of the
i mathematical model follows that of Reference 12. There the technique is applied _

to estimate the state of a lunar orbiting spacecraft acted upon by unmodeled _'
forces due to venting, water dumps, or translational forces due to unbalanced
attitude control reactions.

The equations of motion of the nonlinear dynamical system are given by

--v Ca)
(8-1oi)

-_ v = a(-_, _, t) + _(t) (b)

where r and v are the position and velocity components, am is the three-
component acceleration vector used in the filter-world or nominal dynamical
model, and au is the three-component vector of all unknown and/or unmodeled ">
accelerations.

t.

The unmodeled acceleration _(t) is represented as a first-order Gauss- _"
Markov process _ (t) which satisfies the differential equatiov ,

i

_ "E-(t)= A(t) _(t) + B(t) _(t) (8-102)
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: where Alt) and B(t) are coefficient matrices, _(t) is a three-component vector,
" and fi(t) is a three-component vector of Gaussian noise whose components satisfy

the a priori statistics

_{u(t)} : 0, _{u(t) uT(t)} : IS(t - _) (8-103)

S I

The matrix I is a 3 x 3 identity matrix and _ (t - r) is the Dlrac delta function.
_. The quantity A(t) is a 3 x 3 diagonal matrix of the time correlattor coefficients

VI ,I0 210 -1/T

where T1 , T2 , and T3 are the correlation times, which are unknown parameters
to be estimated by including the vector T

.$

: ! TT= [TIT2Ta] (8-I05)
]

. _ in the set of parameters to be estimated. ,_

The quantity B(t) is a 3 x 3 diagonal matrix [

. 0

B(t) : b2 (8-106)

,: 0 b

: where the b j are treated as specified constants.

,, When Equations(8-I01)and (8-I02)are combined withT ::O, thedynamical
"- system is described by the ._ollowing set of first-order differential equations

r=v ,,

v = a(_, _, t) +7(t)

= A_ + B_(t) (8-I07)

T=0

• If the state vector _ is augmented as

I t I

_T : rT-T,VTCTTITT]

z
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_["_._' the dynamical system in Equation (8-107) can be written as

x = _(_, U, t), X(to) - _o (8-109a)

> where

_T = [VTiC_m+ _)Ti(AT + BU )zi0] (8-109b) ,

; and the _nitial conditions x0 are unknown.

:- " For t > tj, where tj is a reference epoch, the solutions to Equation (8-107)
in integral form are

- m

7(t)='_(ti)+_(ti)At �_('_,v, e, t) [t-r] dr (a)
• I j

7' _(t) = _(tj)+ _a(-_,v, e, t)dT (b)
' _ . (8-110)
; .I

"x. _(t) = E(t) Z(ti) + _(t i) (c) .,/'-

t

[ T(t) = T(ti) (d)

: where A t= t - ti and a(_,v,-_,t)= a_(r,v,t)+ _(t)
¢

; The matrices E(t) and _ (t i) are defined as

• 0 0

' E(t) = a2 (a)

. o (8-1ii)

I

:. _v (tj) = [c_,(I - a_) I/2 u, ic2(l - a])*/2 u2 ,.or3(1 _ a32),,'2u3] (b)

where

ak = exp[-(t - ti)/T k] (9.)

and k : 1, 2, 3 (8-112)

crk = b_(2/Tk) 1/2 &b)

_,_' 8-39
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_. Equation (8-110) can also be written as /

'- - . (8-113)
._ _(t, tj) =G(x(tj), tj, t) +_j, t_> tj
" where

_T= [%Tlo:TI_T;O]I V! c:!

is the state noise matrix which is due to the purely random components of the
_cxleled _celeratton_

_ -_t t -
_: _(t i) [t- r] dr

J

: _, = g(t i ) dr (8-114)
J

,g(tj)
0

/

.,2.J
The statistics of N are

-Qrr Qrv Qr_ O-

O,v %v o
-: _[_] = 0, _ [_T] = Qj_ij = 81 j (8-115)
; Qr_ Q_v Q_ 0

: 0 0 0 0

where _ij is the Kronecker delta functLon, and

' _ = Sj (At)4/4 ,: "_- Qr r

Qrv -- Qvr = Sj (At)3/2 ,:

Qr, = Qe, = Sj (At)'_/2
(8-116)

,. Qvv= S, (/_t) 2

Qv_ - Q,v = SiAt

Q_ = Sj

8-40 w
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sj - o - 0 (8-117) :
0 0 cza2(1- i'

_.- The obset_,ation equation for the jth observation is ;_

,"_ "1 yj = 7(_(tj), tj ) + _j (8-118a) i

:" where _. is the observation noise which satisfies the following conditio_ _

-- 8 [_] - 0, 8 [_T] .. Rj _ij (8-118b)

and where R is the covariance matrix of the observahon noise. ;

_, The procedure then follows that of the Extended Kalman Filter described in .!
: Section 8.4.1, with the following modifications:

/ \
i. The state is predicted via Equation (8-113) with _ -=0. ,y

,_ ]) 2. Equation (8-115) is used for Qj+I in the predicted covariance matrix ;of error.

3. In the filter gain matrix K, R from Equation (8-118b) replaces w "x. _"

; 4. The updated covariance matrix is computed via Equation 18-_c) rather
than Equation (8-90).

The algorithm requires a priori values for the augmented state x0, along with _,

the a priori covariance matrices PA_° , Qj, and Rj. t

"_. When applied to the Apollo 10 and 11 missions, the DMC method gave the
, following results:

: i 1. Its accuracy was limited by the observation noise rath.-.:r than by the
;, i model inaccuracies.

2. The uumodeled accelerations were primarily due to neglected effects in ,the lunar potential, and the magnitude of the uvmodeled accelerations waa / "
dominated by the radial component. ' :

'; 3. The estimated values of umnodeled accelerations were repeatable from -_.
orbit to orbit and from mission to mission. _i

i:

;t
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_!r j 4. The magnitude of the radial component of the tmmodeled acceleration was ,

_' I highly correlated with the locgtion of lunar surface mascons.

j The obvious drawback of the preceding filtering theories is that the noise

_ l st_istics must be supplied a priori. A remedy for this difficulty is discussed
I in the following section.
i

_ 8.4.3 Statistical Adaptive Filtering_:

_ Statistical adaptive fi!terlng techniques are designed to correct the basic i
filter tc a_eount for the combined effects of all error sources, e.g., neglected

"_ nonlinearities, unknown noise _tatistics, computational errors, and model
errors. One of the diffi_xlties with filtering is the determination of the

.- proper value of Q, the state noise covariauce. Additional problems arise iu
determining the statistics associated with the ob_e._ration noise. Effects such

-/ as atmospheric refraction variation and random disturbances in the radar in-
( _t.'-,:mentation are unpredictable. The assumptioIm that have been made are that
i _, the measurement noise (Equation (8-1)), _md_', the state., noise (Equation (8-91)),

_. _ have zero mean. However, due to model errors and nonlinearities, this is raxely /_
true. The goal of statistical adaptize filtering is to determine the actual mean ._
mid covariance of both the state and observation noise so that better estimates

- of the state can be obtained.

Numerous ilwestigators have developed adaptive sequential estimation tech-

niques based on '_he recursive Kalman filter equations (References 15 and le_
_ The J-adaptive filter in GTDS is discussed as an example of statistical adaptive

filters. Jazwinski developed a sequential adaptive estimator having the capability
to track system state and model errors in the presevce of large and unpredict-

able system or environmental variations. The approach is to add a low froquency i :-"
random forcing functiou, representing the model errors, to the differential equa-

"\ tion representing the system model. The filter then estimates this function as
well as the state. The model chosen for this random forcing function is a poly-
nomial with time-varyin[, coefficients. This particular approach is especially
useful in parameter identification problems.

It is assumed that the estimator system _nodel is

,

= g! ('x, t) + _2_(t) (8-119)

_ere _ includes the accelerations that are well known,

F_ includes possible unk_,own accelerations and model errors in _

and 5(t) is a zandom forcing function.

8-42 m.
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_ - ,_ If _(t) is .: linear polynomial in time, the discrete form of the sytem model / _'

__ over the time interval ..f_,j,_;j+l]is

_(tj+l) =g [_(tj ), U'.(t)] (8-120a) "_

_(t) =_(tj) +u(t_) [t- tj] (8-120b) ,_

_vhere _ is modeled ss a random constant to be estimated.

The meagurement model is t,h_esame as in previov_ eections, i.e.,

,: Y(t; ) - f (_(tj); tj ) + _ (8-121a) ;:

' where fi is measurement noise with :,
g

8{H_ T} = R (8-121b)

Hence, the complete dynamical system model is

x(tj+llt j) : G[_(tjltj), g(tj+ l Itj)J 4 _.' (8-122a) I'

- (8-122bl !

, 1' u(tj._lltj)-= U(tjltj) +u(tj+lltj)-r; "r - tj+ 1 -tj , (,

'* t.) (8-1_,c) _-u(tj+l_-_) - u(tll

In order to describe the system, the covariance and correlation matrices are
defined as follows

•i' _ {Ax (tj), A'_T (t j )} = P(tj Itj ) (8-123a) :

_ {Ax (tj) AuT(,t._ )) = C.x(t i !tj ) 18-123b) ,•

8{_x(tj ) _uV(tj 1} = C5 x_,t_lt j ) 18-123C) i-

8(Au(tj ) A_'uV(t_)} = U u(t _It j) (8-1_3d) _
a_, _

8 {Au(tj ) Aur(tj )) .-.U_ (t i ltj ) (8-123e)

8(Au(tj ) AuT(tj )} = U55 (tj it i ) 18-123i_,

_z
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where

A_(tj ) -- x(tj) - x(t i) (8-124a)

A"_(tj) = _(tj) - u(tj) (8-124b)

Au(t i) = u(tj ) - _(tj) (8-124c)

Let

' 7(tj+1[ti) = qbx(ti) + @_(tj ) , _,du(ti) (8-125)

where

_x(tj +I) (8-126a)

q_(tj+lltj) - Bx(tj )

.J

/
} _(tj+ 1I% ) - ?x(tJ+l) (8-126b)

?u(tj )

¢d (%+1 It] ) = ?x(t]+l) (8-126C) I
?u(tj )

The J_winsld Filter is derived by augmenting the state _ with the vectors fi and
fi and using the Extended Kalman Filter in augmented form.

Equations (8-122b), (8-122c), and (8-125) can be combined to _eld an aug-
mented transition matri_

i

¢ = I (8"_I27)"

0 _'

The augmented form of the error covariance matrix is

%1
P ¢.x

P(tjltj)= CTx U.. U_ 18-128)

% u,.oo%1
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-i The augmented state, gain, and observation matrices are

, , :I - _ = _ _ = [Fi0',0] (8-129) :

Substituting Equations 18-127) and 18-128) into Equation (8-92b) and ignoring the

•: state noise yields

i la(ti+zlti) 0 I _" -T _7 ;"= -ux Uu. I_G I 0 (8-130) .

i o o I cT u'.u_ _ _ zI UX UU -- ._

; _, Expanding the right-hand side, the upper triangular elements of P(tj+l I tj) are "

i j I.,ttj+llt)) = _pq_T + _CuTx_)T + _YdC_xgbT + (_Cux@T + _bUuu@T o; (8-131a) /

+_dUu_a_T+_c:, _. +_u_ +
i

.,_ cx<tj+zltj) = _X_ux + CUuu + V_dU_5 + T(@Cc_ + v_UG + V_dUa5) (8-131b)

c. (tj+_i_.)=_c. +_ua +_dU_a 18-131C)ux ) ux

u (tj+,Iti)= U u + .rU T...,.+ f(U.G + fUGG ) (8-131d) ?-

U 5(ti+z(t}) :: U G + TUG_ 18-131e)

"'. UGs(ti+ z ]tj ) = UG_ (8-131f)

where all the terms on the right-hand sides of Equations (8-131a) through (8-131f) , ,,

are evaluated at (t i l t j).

8-45
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Substituting Equations (8-128) and (8-129) into Equahon (8-86d) yields

"- I_'] P CUX %X V _T ] .'

L:J\ I UX

[K. I cT ur. u..
L-- UI -- UX ULI UU

, " (8-132)

: " I

_-_ +_F,OIO]CT Uu. U_× j+l ux

CT UT. U;
; UX UU

-' Carrying out the indicated matrix multiplications,J

_, Kx PF T(FPFT + w_-+11)-;
_..

" Ku = CTxFT(FPF T + w_,+11)-I (8-133) //
I"

Kd CTxFT(FPFT + w_+11)-I

SubstitutingEquations (8-128) and (8-129) intoEquation (8-86c)yields

/ Kxl PC

[o(h+,lh+,)-I i-.K. IEFiO!Oj/ C_ U u.o!

\ I
_'_ -- UX Ukl

(8-134)

= KuF I CTux Uuu Uu

K_F 0 T UT.

v
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" ! _} J Hence, the upper Lriangular elements of Pit j+i )tj +i ) are
d J

i P(tj+IIti+l) = (I - KxF) F(tj+llt_) (8-135a)

'_. Cx(tj+ 1)tj+:) = (I - K_F) Cux(tj �1)tj ) {8-] 35b)
; ,

i ' C6x(ti+llti+l) .--(I - KxF) C6x(tj+llt]) (8-135c)

Uu(tj)l ]tj+l ) _- 'Juu(tj+l]tj ) _ KrCux(tj •� �¬�(8-135d)

: _ U6(ti+liti+l) = U6(t_+lltj) - KuFqx(tj+llti) (8-135e)
i

i U;d (tJ+l!tJ+') = U_6(tj+lltl) - KfFCsx(tj'lltj) 18-135t)

, Substituting Equation (8-129) into Equation (8-100) gives the update eo,_ion for
: the augmented state

t

• i

I = + Ku [Y(t'_+l )- T(_(tJ +I Iti ); ti+1)] (8-136) ,,

(tj+l]tj+ I) (tl+llt j )

[ or
" x(ti+llt)+ 1) = x(tj+llt _) + Kx[Y(tj+ I) - T(x(t_+liti))] (8-137a)

_(ti+lltj+ 1) = _(tj+ilt j) + K.[y(tj+ l) - T(x(tj+l)tj))] (8-137b)

u(tj+llti) =u(tj+tlt i) + K6[y(ti+ 1) -T_x(tj+llti))] (8-137c)

Equations (8-125) and (8-130) are the prediction equations for the Jazwinski

Filter, mad Equations (8-133), {8-134), and (8-137) are the update equations.
The incJusion of Equation (8-135f) is a modification by Torroglosa which keeps

"- the eovariance :._atrix of the state from becoming nontm_itive definite. In the
origin_fl Ja.zv inski Filter, the uncertainty in u was maintained constant and hence,

U66 (tj+ 1 ]tj} = Ua5" The initial condit'ons _¢(0]0), PAx (01 0), Uuu (O] 0), and

U55 (0] 0) must be specified. The correlation terms C_ (010), Csz (010), U 5 {010),@

and the initial values of u(0 10) and _7(0(0) are set equal to zero externally.

8.4.4 Computational Procedure for the Filter Program

The computational sequence for the Filter Program is similar to that for
the Differential Correction Program (see Section 8.2 4). The computational flow

" _I) 8-47
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schematic is shown in Figure 8-2. Both the figure and the accompanying dis- _
cussion are divided into f_mc_ional blocks.

: 8.4.4.1 A Priori Input i :

All necessary input data are specified at (_. This includes the estimated :
variables and their covariances, the measurement time spans, and the number

_: - of observations per set. The state input can be expressed optionally in any of
several convenient coordinate systems as in the DC Program. For subsequent
processing, the state is transformed into the mean equator and equinox of 1950.0

._ system or into the true equator and equinox of a given epoch system. The trans-
formations are given in Chapter 3.

8.4.4.2 Data Management
J

® ©: The observation data are prepared for processing at and This
encompasses relocating the data for the specified measurement span from the

_ _- original input device (cards, single or m_-Jlviple tapes, disk, or keyboard) to a ._/ ,
- working file convenient for subsequent retrieval during processing. During this
• relocation function, the data sequence can optionally be edited considering the I

type of observation, the source of the data_ the tracking station, and the time I

span between adjacent points. The data on the working file are chronologically
numbered, and the number of the data point which bounds tl;v initiai epoch time

t o from below is recorded. The data management function -also includes the
determination of whether the initial epoch time is less than the first data time, ,y

between the first and last d._ta time, or larger than the last data time. For the

first case, the data are processed .qequential]y from the first point at tj to the
last point at t_. For the second case, the processing starts backwards in time _
from the initial epoch to the first d_t_ point, and it then switches back to the

_\ initial epoch and proceed_ forward in time to the last data point. In the third

case, the data are processed backwards in time from the last (chronological) _
data point to the first.

8.4.4.3 Processing Loop ,-_

The processing loop begins by retrieving the first data point to be processed ,

from the working file at _ A test is made to determi_e the optimal integrator
to be used considering the ti_,e span between observations at t i and tj. 1 . A
predicted covartance for tb.e observation is calculated. The observation, its
residual, and the partial derivatives of the measurements with respect to

8-48
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I
+ parameters being 3stimated axe computed at _, determining whether to accept

the observation at _. If the observation is accepted, the Kalman
or reject gain
is calculated, the state, state covariance matrix, m_d correlation matrices are
updated _ and the processed observation is output at C_.

3.4.4.4 Data Set Loop

If it has been determined at (H) that the last observation of a set has been

processed, the updated state at the last observation time and its co_ sriance
+ matrix are printed_ the updated state is then integrated backwards to the a priori

epoch time; and the Current Elements Report, the Solve-for Parameters Report,

and the End-of-Set Summary Report are printed, all at _ After it has been
determined at Q that all the observations have been processed, a last pass is
made through the observation data to compute residual statistics and print final

., reports at _).
Y

8.5 COVARIANCE MATRIX INTERPRETATION

In the previous sections, equations have been presented for calculating the i_

mean i and the covariance matrix PAx of the errors in the estimated state and !

model parameters. There is little diffictdty in recognizing the value of the mean, I
or estimated value, but interpretation of the covariance and correlation matrices
in terms of the uncertain_y of the variables is not as clear. Yet, the covsriance
matrix yields _ great deal of information on the statistical character of the vari-
ables. Some of these characteristics are described in the following sections.

8.5.1 Augmented Vector and Covariance

-. The estimation process yields the mean _ and covariance of errors PA_

of the solve-for variables, and the matrix CA_A, relating errors in solve-for
and consider variables. The mean g0 and covariance PA. of the consider
variables are known a priori. As an aid in understanding _e role of each of the
matrices, the augmented, or expanded, state vector u is defined as (x"i z-)r The
best estimate (or expected value) of u is (x i z0) T. The covariance matrix of
errors of E is PA_, which can be partitioned into the following components

t

ip_, t CA,_ 1

+-- .... i....

LC'zA, [ PA,o
)
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i•.,} where PAu is a positive definite symmetric matrix. Therefore ]

CAzAx = C r .;AxAz :_

_ The submatrix PA-0 remains constant throughout the processing, since the s ,
consider variable uncertain._y car__ot be improved through estimation.

: The following sections present a geometric heuristic interpretation of the ,

covariance matrices PA ' PAx, and/or PA _0 in terms of hyperdimensional : :

volumes of constant probability in the (p + q)-, p-, and/or q-dimensional !
Euclidean space of the vector components. ;_-

1 8.5.2 Hyperellipse Probabilities

In the followingdiscussion, the random vector _ with uncertainty PAx is
considered. The discussion is equally applicable to the random vartables u and ;;

_ _. Assuming that the random vector _(t) is normally distributed, it can be s _'
completely described by its mean and covariance. The assumption that x(t) is nor- _/ V

_, really distributed is partially justified as a result of an analogue of the Central _,

Limit Theorem which states_ "If a large number of random variables are corn- !_
., ' blued in a reasonably complicated fashion to form a single multivariate random

variable, then this random variable will have a nearly normal distribution." :!

For the following discussion, it _s assumed that the random vector of errors
Ax about the mean _ is composed of six components. It is normally distributed .7

:" with zero mean and covariance PAx. Its probability density function can be ' .:!
' _ written as ._

I

Px (A-"_) : 1 exp 1 A xT p-I (8-138)

F

I If PA_ is a diagonal matrix, then ff has components that are statistically tnde- .x

• i pendent (uncorrelated),and p_(_'_)can th_nbe factoredintoa productof six _unlvariatefunctionsofx_,x 2,..., x_ (theone-dlmensionalmarginal probabiD_y ." _!,
,,:_ density functions of the six components of the state). This constitutes a sufficient ,

_ condition for independence of the marginal random vari_ !es x_, . .., x _. :

• 'd

J

• _, _I

'f _'_" 8-51 {
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_" By virtue of its definition, PAx is a nonnegative definite matrix so that it

has n_egatlve elgenvalues. Hence, a stmfl_wlty transformation

=s (8-139)

: which dtagonalizes P&x is always possible since the hypersurface of constant t
likelihood (constant value of probability density) in six-dimensional space is a
hyperellipsoid, and by a rotation of axes it is possible to use the principal

axes of the hyperellipsoid as coordinate axes (i.e., to transform to another ran-
; " dom variable space having uncorrelated or independent components)° The

_yy in Equation (8-139) represents space coordinates and is unrelated to the
observations.

Of interest is the probability that x I , x 2, . . . , x6 lie with.in the hyperellipsoid

,- A x r p_ _-"x -- ,C2 (8-140)

i

where _ is constant. By transforming to principal axes, this expression be- /_,
: comes

i I
_" A y_ A y22 /_y2 _2 (8-141), + +...+ -

.?

where _, _2, • • •, _6 are *he eigenvahms of PA_. The _ransformation matrix
_ from 5 x to _- space is accomplished by the matrix of eigenvect_rs S. By a ._

_, second transformation, A z i = _ Yi/_ ' the expression in Equation (8-141) becomes
the equation for a hypersphere in six dimensions

The probability of finding _-_-_inside this hypersphere is ,_

(2_) 3
volun,P

8-52
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) where the integration is carried out over the volume of the hypersphere of radius /
A r, where

Thus, the probability of finding/X x 1, Ax 2, "• " , Ax6 inside the hyperellipsoid
_xx TP_I x _ = Z2 iS

i .4

: _1 Jo e-I/2Ar2 f (A r) d Ar (8-145) :P" (2 _-)3

where f(Ar) is the spherically symmetric differential volume element.

In six-dimensional space, Equation (8-145) is

Pr : 1 J e -l12Ar2 (Tr3 /_ r 5) d A r ] 1 e_i1242 22 _"_/J_
.... +, + (8-146)

_' (2 rr)3 o 2
I :

For _ = 1, 2, and 3, the probability is 0.014, 0.332, and 0.826, respectively. Also

of interest are hyperellipsoids of other dimensions. Considering an m-dimen- :_
sional random vector where m = 1 through 7, the probabilities corresponding to : _

• _ = 1 through 4 (often called 1, 2, 3, and 4_ probabilities) are as shown in Table
8-I. i _

'fable 8-1 , :,

""_. Hyperellipse Probabilities

_ 1 2 3 4 ,.,_

I

i l 0.683 0.955 0.997 1.00 "_:

2 0.394 0.865 0.989 1.00 _
' 3 0.200 0.739 0.971 0.999 _. ,;
i 4 0.090 0.594 0.939 0.997

5 0.037 0.450 0.891 0.993

i 6 0.014 0.323 0.826 0.986 .
0.005 0.220 0.747 0.975

}

8-53
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._ The problem of evaluating the hyperellipsotd, however, remains very difficult I
.. since it cannot _e visualized. The equation for the ellipsoid can be transformed
i to its principal a::es by means u _ the eigenvector transformation. The resulting ,,
_ diagonal matrix of eigenvalues yields the maximum excursions of the state vari- _.

, ables. Howevel, these excursions are inthe transformed (principal) axes and there-

fore are maximum excursions for combinations ofA x 1 , Ax2, . . ., A x6 and still _ _
difficult to visualize.

- 8.5.3 Hyperrectangle Probabilities

Another method of interpreting the confidence regions of state variable un- _!

_ certainty is by means of hyperrectangles instead of hyperellipses. Consider a ",

i two-dimensional case where PA, is the covariance matrix

_'! PA. = (8-147) _i

, i#'_
, The quadratic form FxxTp_lx_-X'X=_l is _ ;

A 2= ,f,2IPA,<I (8-148) , t '_o,_,,,a._- 2o-a.,,a,.,a.. a., +o-L.' ,,, _

This quadratic equation represents an ellipse such as that in Figure 8.3. 1 }

t
&x21 ] '

i '\
_ _.

._ ! ,_,<

g .

Figure 8-3. Error Ellipse and Rectangle

I
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< The width A x l* and height _x2* of the rectangle enclosing the ellipse are
_ determined from Equation(8-148)for the condition that dt_x2/dAx _ = 0 and ;_
_ d_x 1/dAx 2 = 0, respectively, yielding

_i (8-149)

},

r

i Thtts,the probability that Ax 1 lies within the region -3 _Ax < Axl < 3 _Ax is

} 0.997, A x 2 falling wherever i_ may. _e p_obabilI_y th._ A x 2 lies within _he
region -3 _Ax < _x2 _ 3 _Ax is also 0.997, Ax 1 falling wherever it may.
Assuming no _ignificant correlations, the probability that Ax1 and Ax 2 simultaneously

lie with the respective, regions -3 crA_'- <_ Ax,. _<3_^._.1 and -3or A <:_ Ax 2 _<3 crA_2 is
_ therefore (0.997) 2 or 9.994. The probabilit_ thgt Ax 1 -- __ana ax_ nc within the 3or ellipse
"'[ is 0.989, slightly less than that for the rectangle due to the lesser area.

Extending thi.,_ interpretation to six dimensions, the probabdity that /_x_, ::

:_ _ x_, . . ., Ax r simultaneously lie within their 3_ hype_._c_angles is (0.997) _ _
_ _. or 0.982. The probability that they lie within the six-dimensional hyperellipsoid _.L/' _

is 0.826, significantly lower because of the smaller volume. The hyperrectangle
[ ) probabilities corresponding to _ = 1, 2, 3, and 4 and m = 1 through 7 are pre-

sented in Table 8-2. '_

Table 8-2

_ Hyper--ectangle Probabilities

" ,f, 1 2 3 4 ,:

• t ,!
1 0.683 0.955 0.997 1.00

, 2 0.466 0.912 0.994 1.00 , _:
' "_,. 3 0.319 0.872 0.991 1.00 -

4 0.218 0.832 0.988 1.00 _.ii_
5 0.149 0.794 0.985 1.00 i;

" 6 0.102 0.759 0.982 1.00
:i 7 0.069 0.724 0.979 1.00

; The hyperrectangle probabilities are much easier to analyze since the various -. •
sides of the hyperrectangles are multiples of the square root of the variances. ' _:
However, it is important to be aware of the fact that the boundary of the hyper-

• rectangle merely encloses a volum¢_ of space and in no way can be regarded as :

a boundary of constant probability as is the case with h.,_rellipses.

I I_I,' 855
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,_, The hyperrecta_slo probabilities are particularly convenient during program
/_i checkout. By processing simulated data having Gauss]an random error with _

zero mean and known variances, the residuals of the estimsted vector can be
compared with the calculat_d standard deviations. The distribution of residuals
sho,ld satisfy the 1, 2_ 3, and 4or probabilities in Table _-2.

._ 8.5.4 Correlation Coefficient

_ It has been shown that the off-diagonal co'_ariance elements of a covariancer

matrix determine the deviation between the random vector coordinate axes and

_;_ the principal axes of the hyperellipse of constant probability. When the covari- _"
ance elements are zero, the principal axes are aligned v,ith the coordinate axes
and the components are independent of each other. Furthermore, the normal

_ density function (Equation (8-138)) ca_ then be factored into a product of n

untvariate functions of Agl, Ax 2, . .., Ax .
l n

I Another measure of th_ dependence of two random vectors A'x and A z-'-,having :

'• !_"_[I a (p × q) correlation matrix

COV (A Xl, _ ZI) COY (A XI, g Z2) • • " COV (_ Xl, A Zq)

I I ?
f'_. __

:, '-axA,: 18-150)

, ?

/', COV (A Xp, A Zl) COV (A Xp, /_ Z2) " " ' COV (A Xp, /_ Zq) _'

\,_ is the correlation coefficient, defined as

i Pii = P (Axl,Az) = coy (A xl,_ :i) 18-151) _,_"
: /var (_ x) vat (A zi) _/

: The variance elements are the squares of the stsndard deviations for Ax_ and
; Az., respectively', and lie along the ma_n _agonal of P^ and PA,, respectively. /j L._x

Tl_ corre|ation coefficient satisfies the following conditions:

8-56 _"
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_' _ • p = O ifand only if_x, andAz i (and therefore x i andz.)areuncorrelatedj ,•r

_ • P = "1, ifand only if

: = + _ (8-152)

. Y%J L 'A,d
': where

' CrAxi, CrAzj _ the _tandard deviations of the errors x i and zj, respectively.

8.6 ESTIMATION RELATED TECHNIQUES

' ., Specifictechniques required in the estimation process include matrix inver- ,:

• _ sion, editingof residuals,iterationcontrol,residual statistics,and hypothesis '

- i tests.

" J-..

: 8.6.1 Matrix Inversion ,t

: l The normal matrix is inverted by recursively inverting smaller matrices ._

; and by the use of the Schur identity. The symmetrical properties ,.: the normal

matrix are utilized during the inversion process. The Schur identity method is

developed by asstuning that the matrix to be inverted is of the form "_

_.,

-,, [_ : _ .' .... (8-153) i_

" _i2 ,-[i_ -':.
,7

with the inverse given by

I"[H,,] 'LH,_;-

, 21] t [H22j-
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Since

, :0i\

[m]-: =Q ,' ) (8-155)[oI till

then

-=_ [M11] _I1x] _ [M1) [H21] = [I]

(8-156)

[M2t] [HIt ] - [M2_ [H21] = [0]
=

-_ , Eliminating [H2t] from Equation (8-156) and solving for [Hll] gives

[M_I] [Hll] [M22]-1 [M21] [HI1] = [I] (8-157)
_. sj

or

[Htl ] = [M11]-I _ [MII]-I [M12] [M2_-I ([M21] [Hl1]). (8-158) I

PremultiplyingEquation(8-157)by [M 2I][M11]-i gives

[M21] [Hxl] + [M21] [M11]-I [M12] [M22]-t [M21] [Hst] = [M21] [M11]-1 (8-158)

%

[M2x] [Hxt] -- [[x] . _2,] [Mtl ]-I [MI2] [M22]-I] -' [M21] [M,x] -1 (8-160)

SubstitutingEquation(8-160)intoEquation(8-158)gives

[H11] _; [M11]-I - [Mill -I [M12] [M22]'I
(8-161)

X [[I] + [M21] [Mll ]-1 [M12] [M22]-1] -1 [M21] [MI1 ]-I

t
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The matrices [tt22] , [H_2], and [h2_] may be derived in a similar manner,
yielding

[H22]--- [[M21] [Mll ]-1 [M12] + [M22]] -1
I

[H12] =_ [Mll]-1 [M12] [H22 ] (8-162)

[H21] = [M22]-1 [M21] [Hll]
¢

" It is assumed that the inverse of [Mxl] is known and that [M22 ] is in all cases
a (lxl) matrix. The matrix inversions required in Equations (8-161) and (8-162)
are simply the reciprocals of the elements of the respective matrices. The in-

version begins by setting [M11 ] as
.3

: /
: 1

[Mil]-I--N (8-163)
roll

"_ and J
Ji

I _[M22]-I- - _ _1- (8-164)m2 2

Equations (8-161) and (8-162) are then employed to determine the inverse of

Imll m121 (8-165)
tY21%2_J '

The resultiscalled[M Ii] and thediagonalelementfollowing(inthiscase m3_ )
isused to form a new [M22]. The process iscontinuedalongthe diagonaluntil
the required matrix is inverted. GTDS takes full advantage of the symmetry of

the normal matrix by computing and storing only the upper triangle of the matrix.
The inversion process is designed to invert a matrix in upper triangular form
and store the result in the same manner.

' _ 8-59
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8.6.2 Editing ofObservation Residuals /

The observationresidual,as computed by GTDS, is definedas the actual
observationminus the computed observationthatisbased on thetrajectory

specifiedby the currentstatevectorsolution.Deletionofan observationfrom

the differential correction or filter computation may be accomplished by one or ,
more of the following tests that are made on each iteration or filter set for each
observation:

• By number. After examination of a previous run's residual printout,
the user may elect to delete some residuals by sequence number.

• By time. The observation is rejected if it falls outside a specified time
span.

• By type. The observation type is among those to be rejected.

• By station. The identifier of the station making the observation is
among those to be rejected.

: • By n th observation. Every n th observation of this type is to be

processed; all other observations are rejected. /

• By deviation. The observation is rejected when the deviation from the
: orbit estab]ished by the previous iteration is greater than a specified

value, or, in a filter run, when the residual differs from the predicted
measurement residual, by more than a specified amount.

• By geometry. The observation is rejected when the elevation argle of the
line of sight from the tracking station is below a specified minimum value.

If a residual is deleted by any test, then the row of the augmented matrix F
(matrix of partial derivatives of the observations with respect to the estimated i
parameters) corresponding to the observation is not computed.

8.6.3 Iteration Control for the Differential Correction Program

Condit_.ons that may cause termination of the differential correction process
are as follows:

• Convergence of the solution

• Maximum number of consecutive divergent iterations reached

• Maximum number of iterations reached

8-60 w
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, i The convergence criter.2ain GTDS are based on iterativereduction of the /

square root of the mean square of the observation residuals. This quantity, :
denoted by RMS, is calculated as follows on the ith iteration

?

• - ),.. ,_: Ms = <:Ty:wa y,+_x,_P-'_,.,) (8-166)
Ax 0

where A Yi and &xi are defined in Equations (8-23)and (8-9.4),and m is the

number of observations. Ifthe value of RMS decreases during two consecutive

iterations,the solutionis converging, After a prespecffied number of consecu-

tivedivergentiterations,the problem is terminated. After testingfor conver-

gence or divergence, a predicted RMS is calculatedthrough firstcrder in
for the next iterationas follows i+i

RMSP = /1 (A---_i - Fi Axi+:) T W (ZXYi- Fi A"'xi+,)
t u"
; (8-167) .:.

• )•"_ ,.,.. 1/2

: _ +(Zx+I_A_:)Tp-_zX_0<2x_+,- zxx_) ,.:

where _xi+ I ,_'xi,and F are defined in Equations (8-25),(8-24),and (8-21a),
' respectively. The second term on the right is exactly correct for the

(i+l) _' iteration. The first term on the right linearly corrects the measure-

ment residuals to account for the differential correction _"x i + 1" If the

regression equation (Equation (8-14)) were linear, the predicted tt_,.2 (RMSP)
would be exactly correct. The iterations are considered converged and the

problem terminated when the following criterion is met

I"" R-M-Sfi <e (8-168) . ,,::

where

RMSB _ t,_e smallest RMS achieved compared with all previous iterations

_ the improvement ratio criterion specified by input

8.6.4 Weighted Least Squares and Filter Statistics

Upon completion of each iteration of the weighted least squares fit or after

a specified set of observations has been filtered, a summary of the observation

• _ 8-61
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residual statistics is calculated and printed. The statistical quantities that
comprise the summary are computed for data types and residual groups which
contain data from specific tracking stations. The following abbreviations are
used in the statistical relationships

Ay i " the jth residual, YJ - f!xi(tj)' ZO] t

.,, _ the total number of residuals for a station
• and data type (group).

• Root Mean Square Error

The total weighted RMS, the predicted total RMSP, and the RMS for
each station and data type are calculated from Equations (8-166) and (8-167).
It is normally desirable that RMS be small, preferably zero.

? • Group IVlean

: The mean value of each residual group is a measure of the bias in the ob-
_- servation and is calculated as follows /"

ns I

S-= 1 A YJ (8-169)
I'ls

j--I

• It is desirable that _ for each group be zero to be consistent with the

assumption in Equation (8-27a) that the measurement noise has zero
mean.

• Sum of Squares About Mean

The sum of the squares of the residuals about the mean of each residual
group is

ns m

S =_ (z_\yj - _)2 (8-170)
I=1
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t: J_ - • Sample StandardDeviation

_: The sample standard deviation of each residual group is a measure of
- ._ the dispersion of the observation dat:, and is calculated as follows

nm 1 i : (8-171) :

In GTDS the approximation is made that n. is large. Hence, n, - 1 is =

replaced by n in the denominator of Equation (8-171). The standard
deviation should be consistent with the values used in the a priori weight-

ingm_trix W. _

• Confidence Interval for Group Meav '-

/, If the observation residual group population is normally distributed with =
/

zero mean, then the variable ="

t - .T, (8-172) .>i

has a t-distribution(_udent's)with (n - 1) degreesof freedom. There-
fore, confidence intervals for the mean can be constructed from tables _.

of the t-distribution. As n_ becomes large, the t-distribution ap 'oaches
the normal distribution.

• ObservationResidualGroups
,i ,_-

For each iteration of the weighted least squares fit, or after a specified '
set of observations has been filtered, the following data are printed for ;

each residual group: •

• the number of observations n
s

• the number of rejected aud accepted observations J

• the histograms of observations by true anomaly ,.

i.
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_. _ CHAPTER 9 _,

EARLY ORBIT h_ETHODS• !

t

,' ' The estir_ator algo_:ithm in the Goddard Trajectory Determination System (GTDS)

requires an a pr_.ori estimate of the spacecraft position and velocity in order to

": "i initiate the itera_ive estimation process (see Chapter 8)° An accurate estimate
is frequently unav:,Alable because of large booster injection errors, maneuver

_ errors, or unknown orbits of tracked satellites. GTL-_ has been provided with the
, capability to determine a starting value of position and velocity from a limited

: _ number of discrete tracking data samples.

Three techniques are optionally provided to perform this function. They are as
follows:

• The Gauss Method and Double r-Iteration Method - These determi___stic

: methods use three sets of chronologically ordered gimbal angle observa.. ##

., tion pairs to solve for the six Cartesian position and velocity compo- .>/"
nents at an epoch time equal to that of the second observation. The

I gimbal angle observation sets need not be from the same tracking sta-

i i tion. The central angle (from the earthts center) subtended by the three
sets of angles should be less than 60 degrees for the Gauss Method and
less than 360 _ for the Double r Method. Either X and Y or A and E

gimbal angle data from GRARR, ATSR_ USB or C-Band Systems, _-and

i m-direction cosines from tb_ Minitrack System, or geocentric right
ascension a and declination b observations can be used.

• The Range and Ar_les Method - This method uses multiple (more than
', two) sets of simultaneously measured range and gimbal angle data from '

\ the GRARR, ATSR, USB or C-Band radar systems. Two-body equations
are regressivelyfittedto thetransformeddatatoyieldepoch valuesofthe

: spacecraft position and velocity.

9,1 ANGLES ONLY METHODS

Both the Gauss Method and the Double r-lterationMethod use threesetsof

chronoiogieallyordered gimbal anglemeasurements from up tothree separate
trackingstationstodeterminethe Cartesiancomponents ofpositionand velocity.
The angledata setcan be distributedover an orbitalarc of lessthan60 degrees

mean anomaly forthe Gauss Method and up to360°in mean anomaly forthe

. 9-I
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[ Double r-Iteration Method. The epoch for the position and velocity corresponds
to the time of the second observation set. The methods are deterministic since

(

the six measul ement components yield the six position and velocity components.
: Additional descriptions of these methods are presented in Reference 1.

, 9.1.1 Transformation of Topoeentric Gimbal Angles to Inertial Coordinates "

All gimbal angles are initially transformed to topocentric station centered azi-

•- muth A and elevation angle E. The X30 and Y30 angles corresponding to the :
_ GIL_P,_ and USB 30 foot antennas are transformed by

, ?

sin E - cos X3ocOS Yso

_ <_.E_< _

cos E = I{1- sin2E (9-1a)

and
; )

f.

_ sin A = sin X30 cos Y30/cos E _,

(O<A<2_) _ ;

: cos A = sin Y30/cos E (9-1b) '

The Xss and Yss angles corresponding to the USB 85 foot antennas are trans-
,, formed by )_

sin E = cos Yss cos Xas

<E<

cosg= I/l-sin 2E (9-Ic)

#,

sin A = sin Yss/cos g _ ::

(0 < A <_2_)

cos A = - cos Yss sin Xas/cos E (9-1d) ,

9-9. N
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1

,-J The direction cosines _ ana m are transformed by j

cosE- _'_2+m 2 (0_<E_<2) (9-2a) ::

and

sin A = _/cos E

, (0 __E _<27T)

r ! COS A - m/ros E. (9-2b)
i

, , The C-Band radar glmbal anglesare directlymeasured as A and E, and the

resulting angle sets are denoted by (t, A, E). The altitude above the reference
_ earth ellipsoid, the geodetic latitude, and longitude of the tracking station meas-

1 uring *,.heangle set are denoted by (h, _,, _, ). The unit vector directed toward
the spacecraft can be written in topocentric local tangent coordinates as follows.

_OS E sin q _" ;

'i' + L

The tr,acking s_atlon coordinates, expressed in body-fixed axes, are presented in _+
Section S.32 as

+I
(N,+h) cos .s

r-Ib -- I (N,+h) cos _, sin k (9-4)

L[N,+h - (2f - f2)N,] sin

where

R
N,= ('J"5) '

_'I - (2f - f2) sin 2 qS, i

and +

R earth's equatorial radius
f ,_ earth's flattening coefficient

9-3
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' Both the Lit and _,_ vectors are transformed to a common inertial Cartesian /
¢

_ axes system, either true of reference date or mean of 1950.0. The transfor-

mations, presented in Sections 3.3.1, 3.3.2, and 3.3.7, follow. The matrix M,rt
_' from Section 3.3.7 transforms from the topocentric local tangent system to the

body-fixed system and is a frnction of the station's latitude and longitude, i.e.,<

>

where _

': I_ -S in _ cos _ Gq51 _":._ Mlt - sin q_ cos k -sin_s sin k cos (" ,') ,

[_ '-
. _

cos q_scos _'s cos _s sin _ stn _

The matrix B T, from Section 3.3.2.3, transforms from the body-fixed system to
_: the true of date system and is normally a function of the Creenwich sidereal time /" i

and polar motion. Polar motion is negl_e_d for early orbit application (from .:t :,

considerations of precisinn). The transformation ls as fellows

OS _t COS a t

f"r = I c°s 3t sln _t = ]]T(n "_ f. (9-8) ';
t. - X--g/ "-b _.

: '" and ' _;
_, t ' _-

1" = Br (a) r (9-9) , i
gb

where ,i

cos a -s in a 0
g g " ;

B r = _ COS c_ (9-10)'_ g g

t

9-4 _"
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_, a t _ topocentric right ascension of spacecraft from true-of-date equinox
_ topocentric declination of spacecraft from true-of-date equator _"

: _ t

a -_ Greenwich sidereM time at measurement time t (see Equation (3-19))._ g

Equations (9-6) and (9-8) can be combined resulting in a single transformation
: matrix M1t identical to that in Equation 19-7), with \ replaced by (_ + _g ),. b ^

• the longitude measured from the true vernal equinox. The unit vector L T in

: Equation (9-8) can be solved for the topocentric right ascension _t ard declina-
: tion _, ' Should observations of the topocentric right ascension and declination be
_, available, they can be used to replace the topocentric gimbal angles aria deter-

• mine L T directly from Equation (9-8). The matrix C T from Sectiou 3.3.1.3 :
transforms from the true of d_te system tc the mean of 1950,0 system a_.d

• accounts for nutation and precession. The resulting transformation is

" ' /L--cTZ,T (_--._) ."g- •

-< R= -_C T -r- (9-12) :$ .

, ,f

•:Chore C T is the product of the precession transformation A(_0, ()p, _:p) and the
mttatton t"ansformation N(Se, S¢ ) as follows :

C T = (N A)T (9-13)

1

The elements of the summation matrix C T are cbtained from an ephemeris file

in GTDS as a f_.ction of time from 1950,0,

Combinin_ the preceding transformations,

Z,= {M,tBC) T I_,, (9-14)

and ":

= (BC)TV (9-15_ z

,u,.

'_' 9-5
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Equations (9-14) and (9-15) present the transformation._ necessary when the 1
computations are performed in the mean of 1950.0 system. Specifying C -- I

: permits the vectors to be transformed to the true of reference date system.

In the following sections three sets ofgimbal angles, obtained at times tl, t 2 and

t 3, _re available from either the same or different _*ations. Station vectors and

unit vectors directed towards *.he spacecraft, (t{_1 ' _ )' ('-_s2' L2 ) and (R,3' L3),
can be determined from Equations (9-3), (9-14), and (9- _5) for each gimbal
angle set.

9.1o2 Gauss Method

The Gauss Method utilizes the geometric properties of the station positions and
station-to-spacecraft unit vectors, in conjunction with an approximation of the
orbital dynamics, to determine an estimate of the sp_cecraftVs position at time

./ t 2. The orbital dynamics are approximated by the low order terms of the f and
: g series, *_erefore limiting the orbital arc of the angular observations to be

within approximately 60 ° in mean anomaly. Subsecf_ently, the accuracy of the
position vector is iteratively improved, and the velocity vector determined by the
method of Gibbs. This method utilizes the approximately known position vectors /_

at the three observation times to determine a velocity vector at time t2 . Know- ' _
ing the velocity allows one higher order term to be included in the f and g series [
and thereby improves the spacecraft position determination. ]

The geocentric inertial position vector R. can be determined from the known

vectors L and R_i and the unknown slant range _i from the station to _e
spacecraft as follows (see Figure 9-1).

/

r

Figure 9-1. Position Vector Geometry

•_ ,,=(.
9-6
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• t

T g_=R +p_L, (i =1, 2, _) (9-16)I. i

r The three vectors _, R2 and _ are coplanar since they all lie in the same :

!. orbit plane. Therefore, _ can be written as a linear combination of P'I and R3as follows

1

I

l C1RI + C2_2 + C3R3 = 0 (9-17)

i where

! c2=- 1 (9-1s)

; Substituting Equation (9-16) into Eqnation (9-17) yields

/!

:_ CIPI£I + C2p2L2 + Cjp3L_ = - (CzR-_I + CzRs2 + C3Rs3) (9-19) -,oo,e" _-

or, bl matrix form
.,

z P CI i_

L [C 2p21 =-R C2 (9-20)

where t ,:

r

I-

1
• '" 9-7

_,_, _ _ _'i
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l>remultiplying Equation (9-20) by L "I yields /

CI P_ CI

C2p: ---D C2 (9-22) ,

C33 P:.j _ _

where

D = L-' R_ (9-23)

The precedingthreescalarequationsix.volvethefiveunknown variablesC I, C2,
PI' P2 and Ps- Additionalconditionsmust be impos_l todeterminethe slant

• ranges Pl , P2 or P3" Knowing any one of these ,:nr_ges, a geocentric position

i vector RI, R2 or R3 can be determined frcm £quaticu (9-i6).

- The cross product of RI and R_ _'th Eo_tat_on :';-17) yields /

" G : ×RG
(9-24)

_3 X R2 = ClF"3 X R1

Dotting_,theunitvectornormal totlmorbitalplane)uthed__rectionof theangular
momentum, intoEquation(9-24)gives

Ca =

(9-25)

c_=_ . (R_×R3)

The posttion vectors can next be expressed in terms of the f and g series
representation for two-body motion (Reference 2). The series is expanded
about t2, the time of the second observation, as follows

m

9-8

/

I I

1976017203-452



l

; I _. = fiR- 2 + gi_ 2 (9-26)

where
k

i ,

: fi =1 lu._.? 16._..3_2_(h. 2 u_)__4" I- 2 " ' -6 " ' - ,-_(G'2-4u2621"i s .... (9-27a)

r.

1 3 1fi2_4 1 (3_j. 2 u2) _..s _ (9-27b_:: gi =-ri -_u2_i - - 12---O - " _ "'"

: and

-'_ ¢i = ti - t2 (9-28) :

u2 = _ (9-29)

where

F _ gravitational parameter for the earth

Substi._ating _ and R._ from Equation (9-26) into Equation (9-25) yields

g3 _
(21 =

LI g3 - f3gl "

(9-30)
i

-gl

C3 - flga- fag1

Approximating fl' f3' gl and g3 by

I _2 "
fi =l-_u 2 i+0(_)

(9-31) :,

1 r3 0(,i4) (i 1, 3)gi = _i -'_'u2 i + =

9-9

:, REPRODUCIB_Lr_ 01_T_,
1 ORI(]_tAL PAGE _ _00_ "
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: F _dation (9-30) becomes j

C 1 = a 1 + b I u 2

(9-32)
C3 = a- + b 3 u 2

|

where

"r3 7"3 _ )2 _ "r:_]a 1 - b I - [(T 3 r 1
_3 - % 6 (% - _1)

(9-33)

T 1 T 1
a3 - b3 - [(Y3 - "rl)2 _ ./-2 ]

"r3 - 'r I 5 (r 3 - "r1)
J

Substituting Equation (9-32) into (9-22) gives s
/

(al + bl u2) Pl al bl

-P2 =-D -1 + 0 u (9-34)

(a3 + b3 U2) P3 a3 .b31

1_epreceding Lhree scalar equation5 involve the four unknown variables Pl, P2,
,o3 and U2o i

Dotting Equation (9-16) with itself (for i = 2) yields

Rg--;g, p_c_+R: (9-35)
' J2

where

C,,."-2 £'2 ' R'2 (9-36)

is known. The second scalar equation of Equation (9-34) is

9-10 _B

[
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2

* , ¢z
i IO2 : d l + d2 _ (9-37)
f

:- where

: d I -- d21 a I - d22 + d23 a3
; t

, (9-38)
; d2 -- d21 b I + d23 b3

• and the matrix D contains the elements (dij).

Substituting Equation (9-37) into (9-35) gives

," R2 = + d_ + + d2 C_ + R_2 (9-39)

; or

2 6 d* * *
: -x [ R_ - (d 2 + d,C_ + Rs2 )R 2 -/.L ( 2 C_ + 2d,d2) R23-/_2d_2 = 0 (9-40) /

I Solving the preceding equation for its real positive root yields R2, whicb, from
Equation (9-29), determ_es u2 . Equation (9-34) can then be solved for ;,, P2
and ps, and, finally, Equation (9-16) can be solved for Ph, R2 and R_. Tills
sequence of computations is summarized in Figure 9-2. The resulting position
vectors are only approximately correct because of the truncation of the f and g
series to get Equations (9-31).

The accuracy of the _'osition can be improved and the velocity vector computed
by the method of Gibbs (Reference 1 ). Th_s method utilizes the three ap=
proximately known position vectors R1, R2 and Rs to determine the velocity R2"
This allows an additional term to be retained in the f and g series.

The position vectors R1 and Rs can be obtained from a Taylor series expansion
about R2 as follows

• .. T2

_ _Ri = R2 + R2 "rl + R2 "_"+ -_- (9-41)

The vector differences (R, - R2) and (R3 " 1_2)can be obtained from Equation
(9-41). Multiplying (R1 - R2) by - r_ and adding to (R3 - ii2) multiplied by _
yields

" 9-11
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J
Given Calculate (Gauss Method) I

,- t,. £v Rs, 'I R,
_ -_ ar a a D - L'lRs d_

t2, I_2. R_z _ _ _ -,_ _ C _ r 2 u 2

"a b 1, bj = ((lj) d_ -'_ _ "z _ Rz_ a

h. £3.xs_ _ i_3

Eq(28) Eq(33) Eq(21). (23) Eq(38) Fq(36) Eq(40) Eq(29) Eq(34) Eq(16)

?

So I u t I on R 2, _2

ICo _ed......

HI, G,, D 1 fl' gl CI 'l Tt'st

R 2 u 2

H2' G2' Dz _ R2 _ • -'_ _ fz' g2_C_ --1) _ .,2"*'Convergence Not

. ; R 2 t'l2 Conve r lied

/ He' Gv De fe' ga Ca of l'e " '2" 3

Eq (50). (Sl). (49) Eqt48) Eq(52.53) Eq(29.54) Eq(27) Eq(301 E¢,t 22)

\
"x. ¥

Calculate (Gibbs Correct lon'_ ,*/

Figure 9-2. Gauss Method Computational Sequence

I

IR _ R_w) 1 (9-42)- - _'I _'2_13 2 - _2 %_ - ""__'3(_'_ + _'l ) _ + ' •

where
p

I

_,_ = "re- _'I (9-43)

Differentiating twice gives ' .

- _'__, + (_'_- -r_)_ + _-__a - - "rl"ra"r,a'_'2+ 0 (R2(Iv)) (9,-44)

Multiplying (R, - R2 ) by r 3 and (R3 - R2 ) b_ - r 1, adding the results and differ-
entiating twice yields

REPRODUCIBILITY OF TIIE

.: OIU_NAL PAGE 18 POOR "_"9-12

' _ .......... _ ............... 1[1_.............. illil _,, , .,,, II Ili IIIt II]"lil II III i I I
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.. .. .. Iv)
-r3R1 - 7-t3R2 - "rlR3 -- - 7-17-3"ra3--_ + O(R(2Zv)) (9-45)

°..

Solving Equations (9-44) and (9-45) for R2 and R (2Iv) and substituting them into "
Equation (9-42) give_ i

. _ Substituting the inverse-square law
i,

R_ =- _ (i = 1, 2, 3) (9-47) _/
Rf ":J

into Equation (.9-46) and rearranging terms yields

R2 = - D1RI + D2R2 + D3R3 (9-48)

where

,i
H.

(9-49)Di --Gi +_ (i = 1, 2, 3)
Rf

with

/_7-3 #7-I
H, : _, H3 : .... , H2 : Hl - H3 (9--50) ;12 12

7"3 7-I

G 1 - G3 - , G_ - Gl - G3 (9-51)
';l 7-13 '/37"13

4 '
e

' _'_ 9-13

¢,

....... r ........................................ ,/L'_' ' ' j_ 1 ' _.,.. ,,_,,..,ml.m_m,*e_w'mmmm't< _ I
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Knowing R2 and R 2 from Equations (9-40) and (9-48), R 2 and its time derivative ]

1_2 are obtained from

Then u 2 can be determined from Equation (9-29), and 52 ca_. be dete:cmined as
follows

_i2 : - 3__R2 (9-54)

?

Knowing u2 from theprecedingequationpermits one higherorder term tobe in-
. cluded in the f and g series in Equation (9-27). An improved determination of B 2 t

r

is thereby obtained by iteratively solving Equation (9-27) for fi and gi (including ....

the higher order term); Equation (9-30) for C 1 and C3; and Equation (9-22) for "1,
P2 and P3 • After converging on Pl, /_2and P3, Equation (9-16) is solved for R2
and Equation (9-48) is so!ved for R2. The computation sequence is shown sche-
matically i_ Figure 9-2.

9.1.3 Double r-Iteration Method

The Double r-Iteration method requires an initial guess of the magnitudes R 1
and R 2 . Then the geometric relations of the three station positions and station-
to-spacecraft unit vectors are used in conjunction with the orbital dynamics to
determine the time intervals 7' (between the first and second obsecvations) and1

7' (between the third and second observations). A standard Newton-Raphson3
successive approximation scheme is then used to correct R1 and R 2 to

match rl' and r_ to the known intervals _1 and T_.

The Double r-Iteration method can be used when the angle data is spread out

over a considerable arc in eccentric anomaly whereas the Gauss method is

um'eliable and may not converge over large arcs.

From Figure 9-1 and Equation (9-16), the slant range vector from the station to
the spacecraft is

I

9-14
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i

> _ = _ - _ (i = 1, 2, 3) (9-55)
i' si

; Dotting Equation (9-16) with itself yields Fquation (9-35) rewritten for the i th
' observation as follows

2 (R_ R2) 0 (i 1, 2, 3) (9-56)Pi +PiC_ + - = =

where ;

% =2/..g (i=l, '_ ._ (9-57)
i i s i -' -,

, Solving Equation (9-56) for Pl and P2 by means of the Binominal Theorem
/ gives

J
"_. #

Pi _(-c¢ii +¢% - 4(R2s- R_)) (9-5S) .... :i

I i
where the positive sign on the radical is known to yield the correct roct from

physicalconsiderations.InitiallyestimatingR iand R2, Equation(9-58)can be

solved for Pl and P2' and Equation (9-16) for R 1 and 1%. Knowing R1 and _t2
merely defines the orbit plane ',in terms of fl and i) an_ two position vectors
in this plane. However, there axe numerous orbits (in terms of a and e) which
satisfy the two position vectors R1 and 1R2. Therefore, a third position vector,
along with orbital dynamics relationships, are necessary to uniquely determine t

the orbit being observed.

lhe quantity k is defined as the unit vector perpendicular to the orbit plane, i.e.,

R 1R 2

Then, since the third position vector R3 must lie in the otbital plane,

_3'_ = 0 (9-60)

" 9-)5

i'

' ,,,,i * _ ,*l I _ m I _ ,L_,_m, , , ..... :--:: : _
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Substituting Equation (9-16) into Equation (9-60) yields I _,

7
R "k

s 3

" Ps =_ (9-61)

i

: Knowing P3' the geocentric vector R 3 can be obtained from Equation (9-16).

• Note that when Ps lies in the orbit plane, Rss and L3 are perpendicular to
" and Equation (9-61) is singular. Should such a singularity occur, a different

observation time t 3 must be used. Thus the vectors Rl, R 2 and R3 have to be

i determined as functions of the estimated vector magnitudes R, and R 2.

, The difference in the true anomalies can be determined as follows

R'P
, c°s(ti - fk)- ' (9-62a)

-, RI_ <¢ 1 •

_"- sin(fi fk) m vll cos 2 (fj fk) (j, k 1 2, 3) (9-62b) ," ;:

where f denotes the true anomaly and I ,:.
;?

m=± % (9-63)
I\Yj - XjY I

i

,,

where Xk, Yk, Zk are the components of I_; _he positive sign is used for direct
-. orbits and the negative sign for retrograde orbits. In order to correct the , :t'

estimated values of R and R2, it is necessary to compute the resulting time
intervals between (1%3,_) and (1_,, R:) to obtair residuals as actual time diff.r-
ences. The semilatus rectum obtained from Gaussian sector to triangle the:.r"
(Reference 1) is

R 1 + Cr3R 3 - CrlR 2 _-
p _- (q'o Lp

I _ C_ - C,
_

or, dividing the numerator and denominator by C_
I

CIRi + C3R._- R2
P --- 19- _5) ",

C1 ._ Cs - 1

L

9-16 REPRODUCIBILITY OF THE
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[_ where
= , f •

R2 sin(f3 - f2) R2 sin(f2 - fi )
C1 = w C3-

R1 sin(f3 - fl) R3 sin(f3 - fl )

(9-66) ' "
; I

R1 sin(f3 - fl) RI sin(f2 - fl)

Crl =R--2 sin(f 3 - f2) Cr3 =R3 sin(f3 - f2)

For very short observational arcs, bo*h Equation (9-64) and Equation (9-65) are

poorly determined, and the Gauss Method (Section 9.1.2) should be used. The _

siugularity inherent in Equation (9-64) when f3 - fl = 7r can be avoided, along

with other numerical difficulties, by using Equation (9-65) when fa - fl < v and

Equation (9-64) whenever f3 - fl > _' i:
/

•_ From Equation (3-183) the conic eq,,ation for true anomaly is

c cos fi - p 1 (i = 1, 2, 3) (9-67)

i I E.,.oanding factors of the form sin (fl + f2 + f3) gives

e cos fl c°s(f2- fl )- e cos f2e sin f =

(9-6_)

- e cos f2 c°s(f2 - fl ) + e cos fl _
e sin f2= _-_-

s_n(f2-2- )h

for (f2 - fl ) _rr, and _ ",_

e cos f2 c°s(f3 - f2 ) - e cos f3
e sin f2 = ...........................

sin(f 3 - fl )

(9-69) _

- e cos fa c°s(f3 - f2 ) + c cos f2
e sin _f3 .................

sinif£- fl)- ,,

._' 9-17
i
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: for (f3- f,) _. From Equations (9-67)thru (9-69) the eccentricity can be ,
-_ determined as

e 2 = (e cos f2 )2 + (e sin f2 )2 (9-70) _'

and the semimajor axis as

_ a = P (9-7-)
: (1 - e2)

For ms elliptical orbit (e < 1) the mean motion n is

n =- (9-721%6
a

i
and the eccentric anomaly E. is

I
R, r--

sinE i =--_ vl -e 2 sin fi
P

(9-73)

Ri (e + cos fi) (i 1, 2, 3)---- _-"

COS Ei = P J,

The preceding equation can be written as follows for the second observation point
_'"t

S -= [e s,n E2] :.--R2 v'i---'e "3 [e sin t2l 'e p

(9-74)

R2
C =: [ecosE 2] :--(e 2 + [ecos f2])e p

[
I

9-18
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{ . The following eq_,ations for differences iu eccentric anomalies expressed as
Ii functions of true anomaly differences can be obtahmd by expanding Equati m (9-72). ;

: _ _ R3 R 3
._ ?, sin(. -E2)-_sin(fa_ f2 j ___ [1 -cos(f 3 - f2)] Se ;,

_/ p

' (9-75)

RaR:
"i' c°s(E 3 - E2) = 1 - _ [1 - cos(f a - f2)]

,; _ ap :

_ :,

:' RI RI

sin(E 2 - El) = _ sin(f 2 - fl) -_- [1 - cos(f.: _ f;).l Se :

)I (9-76_'_}

,_ R2R1
! cos_E 2 - E,) : 1 - _ [1 - cos(f 2 - fl)]

Kepler's equation (Equation (3..147)) is written as

_;_.=E - e sin E {9-77)

where M is the mean anomaly. Mean anomaly differences about the _econd _
point c-m be written , :

M3 - M2 = E 3 - E2 + _ S sin 2 3 - g ,::'" e _' - C s i,,(E a - E2) _"

(9-7b)

M1-M2=E,-E2 +2Se si:_2 (-E?2E-1)+C si,,(E2-E,)

,_ 9-19
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The mean anomaly cau also be written in terms e,_ the mean motion as

Mi -M 2 = n(ti - t2) (i = i, 2, 3) (9-79)

Revrriting the _weceding equation for the time differences yields
£

/

: M3 - M2 M1 - M2
- , ,, (9-8o;

r_ rl

I

where T'3 and 71 are defined by Equation (9-28). Equation (9-80) express¢ ' the
time differences between points 3 and 2 and between points 1 and 2 as functions• /

/ of the _ocentric position vector magnitudes R 1 aud R 2. This process is sum-
.nari_ _in Figure 9-3.

' and ' _rill, in general, not agree _ith the_ne calculated time differences _1 _3

ephemeris time differences _ and _3 corresponding to the station observa- _""
tions. Thus R, and R 2 must be adjusted to obtain agreement between the calcu- !
lated -_nd actual time differences. A standard Newton-Raphson successive I
approximation procedure performs tbis adjustment az shown in Figure 9-3.

If the functions F1 and F2 are defined as follows,

M l- M2
FI(RI' R2) = _1 ---_ n

(9-8D

M 3 - M 2
F2(Rt'R2) = _3 .... '

n

the calculated and actual time diffexences will agree when F 1 and F 2 are zero.

The algorithm for successively driving F 1 and F 2 to zero is obtained by

linearizing Equations (9-81) about the estimgted values of R1 and R2, denoted

R] im_d R 2i "

l

R_:'RODUCIBIL1TY Oh' 'vliL ,_.
9-20 0RIOINAI, PAGE IS I'0(,_R
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i I
G I ', (.i; Est imat, Calculat(.

f----_-'--_ _ I, '_
/

tl l_l" -;I'sl RI ti ' I R, c s_n(f2-f ]) CI (. cc.-¢ fl e2

t l_2. _ _ _ _ _ _ co_(f_-f_) _ C2 _ e cos f2 _ a -_
, 2 R% R_ ' 2 R2

It 3. f._ _ _j _,,_(r3-f _) p ,. s,. f_ .

(i I) co_(fz-f2_ e sln f2
l

Eq(58) Eq(16) Eq(59.61,16) Eq(62) Eq(64-66) Eq(67-69) Eq(,70-72) ]

i L s_n(E3-E2)

S Mz--M 2 FI(RI.R2)

C Mz -M_ "-" F_ ( R_. R2 ) _ ,,_'

s ]n(E:-E_) ] " '"

o_ _E2-E I )

Eq,, 74) Eq{75.70) Eq{78) Eq(79) /

r T,.._tF,_ F_ =[Sol,t.... R_,R_

:L
9

R_ Rl - ' RI _ . '.
* R2 --R2 ) , R2

i 3

\.

LR t _FI AFI 4
"_I')RZ * "_Rt R! 1 ," • ! ,',R I _R 2 #

R2- .R2=.._ _ _ _1 _ _

l _F2 ,Trz "z "'P'I R_ ,l_:a)n,_t z_,ro

_Rt _Rz

Eq(89) E(1(86) Eq(85) Eq(87) Eq(88)

Figure 9-3. Doubler-herotion ComputationSequence

': _" 9-21
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This linearization yields

8F 1 oF 1

AFz = _ t_R, +% AR2

(9-8_.)

3F. 8F2
AF2 : --" AR: + AR2

• _RI _2

where

AFI = F11+1 - Fli = F1i

(9-83)

AI_"2 = - :F2i+ 1 F2 i F2 i
J

",

; and

= R1i+ I - RI i . I

(9-84_

AR 2 = IR2L+I - R2i

SolvingEquation (9-82)simultaneouslyforAR I and AR2,

ARI =-_-

(9-85)

A2
AR2=T

where

iN)
(9-86)

I

_J

9-22
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i

The corrections ARI_d AR2 axe added to RI_ and R2 to yield the i + I th
approximation

= R1 * AR1Rli+l i

(9-87)

= R2. + AR2R2i+l

,,r

/. This process is repeated successively, incrementing i each time, until con-
. vergence is obtained. The convergence criteria are satisfied when the absolute

_alues of the corrections are less than a prespecified tolerance e, i.e.,
.%._ I,

J

|

(9-88)

[_R2[ < _.

The partial derivatives required in Equations (9-86) are approximated by the
one-sided finite differcnc,e approximations

, 3F 1,,,F l(R 1 + bR1, R2) -F I(R 1, R2) .,

3R 1 _RI

3F I.,,F lfR 1, R2 + SR2) -F I(R 1, R2)

3R2 b R2

(9-89)
3F2_F2(R I • 5RI,R2)-F2(R I,R2)

3R1 _R,

JF_ _.F2(R1, R2 + bR2) - F2(RI,R_)

,)R2 SR2

' _" 9-23
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I
The converged solution for R 1 and R 2 yields the position vectors RI, R2' _'a and
•all related variables in Figure (9-3). Therefore, the closed-form f and g coef-

ficients (Reference 1) are

f = 1 -a [1- cos(E 3 -E2)]
R2

(9-90)

1
g -- v'3 --- [J_:3- E2 - sin(E3 - E2)]'

which yields the velocity vector

- Ta - f R2
• , r2 - (9-91)

g

9.2 RANGE AND ANGLES METHOD " -

The Range and Angles Method determines spacecraft position and velocity by I =

fitting two-body orbit relations to GRARR, C-Band or USB range and gimbal

angle data in a regression manner. _,

A set of m chronologically ordered radar data vectors are available from

the GRARR, C-Band and/or USB systems. Each vector consists of a range

measurement and two gimbal angle measurements. The measurement vectors
are first transformed to the station centered topocentric local tangent Cartesian

coordinate system. The GRARR and USB angles, X and Y, are translJrmed to

azimuth A and elevation angle E, as shown in Equation (9-1). The C-band data

vectors and transformed GRARR and USE data vectors are then transformed to

local tangent coordtnates as follows

x os E i sin . :

- = Y = P I cosE cos (i = 1, 2 ..... m) (9-92)

Lz1_ IL _in E, ,

I

'_ 9-24 -':° ":'-'r_U,',[,,tTY OF THE
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• 1• _ The local tangent vectors are fi,._n transformed to true of r':feren _e date or ',

mean of 1950.0 inertial coordinate s_ztems as described in Section 9.1.1, i.e.,

_i : (Mlt BC)T _lt (9-93)i i

The station position vector in geocentric inertial Cartesian coordinates, given in

• Equation (9-15), is ":

Rs = (BC)T _ (9-94)
Sb i "_

,. where the station coordinates in body-fixed axes are given in Equations (9-4) and
o

/ (9-5). Vectorially adding tbe station vectors Rs i aria topocentric spacecraft

vectors E i yields the geocentric spacecraP, posi_Aon vector
$,

/

Ri = Rs + _, (i = I, 2 ..... m) (9-95)|

I
A two-body orb,t is then fitted to the m position vectors by using the I and g

series, expanded a:_out a d,_sired epoch time

2

Ri = f,Ro + g_Ro (i : 1, 2.... , m) (9-96)

Multiplying the preceding equation by f and then summing on i yields
I

f2_ f giRo (9-97a)fiRi = _ t u * i
i-'l t=l *=1 ':-

i

•' 9-25
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MultiplyingEquation(9-96)by g i and summing on iyields [

- 2- (9-97b)giRl = fi giRo + g_Ro
i=l i-I i--I

Solving Equations (9-97a and b) simultaneously for R0 and R 0 yields the desired
inertial geocentric position and velocity at epoch.

L 2 2
R0 = i-1 i--1 i--I ,=I (9-98)

: f2 2 fi
// gi- g

i=1 i=1
0

f) Ri f gi f Ri

R0 = i;l i;1 i:l i--1 (9-99) [

1 gi - g
d

i--1 i=l

Equations (9-98) and (9-99) are s,,lved iteratively by successively improved

approximations for f i ,'rod g i"

The orbit is initially approximated by a circular orbit with the semi-major axis
a obtaired by averaging the m position vectors

1 2 I (9-100)IRi ,[t
nl

i--1

The mean motion n is

n = _ (9-101)

L

m

? 9-26 '"; );_ E
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" and the mean anomaly measured from epoch is /

Mi - M_ = n(ti - to) (9-102)

I

The coefficients f and g for the two-body cireul_Lr orbit, corresponding to each
measurement vector, are (Reference 1)

fi= c°s(Mi - Mo)

._ (9-103)
1

gi =- sin(Mi - Mo)n

: 'i Substituting the preceding fi and g i into Equations (9-98) and (9-99) yields the
4 first approximation for R0 ar.d R 0. After the initial iteration the coefficients ./

fi and gi are calculated fro_, the following procedure. -....

I Reference.2 presents a general method for computing fi and gi as functions
of R0 and R0" The Sundman transformation is used to obtain a new independent
variable _. defined by

= _! (9-104)
R

The coefficients i i and gi are determined from the relations

fi= 1 - _zS2(q;i)/Ro

1'9-105)

The velocity R i can be determined by

Ri = l:iRo+ gi_o (9-106)

,t #, (_ #)_!

i

• --_p_._ _ .....
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_ where ]

!

,' f., = -/_S: (_b)/(R i Ro) '_

(9-107)
" _ = 1 - _S2(%)/R_ '

and the time difference between _t i and Rc is •

T i -- t i - t o -- _0Sl(_bi) + _0S2(qJl) + _S3(_i ) (9-108)

The parameter _o is

% : P,o'Ro (9-:09)
,(

and _he parameters 81, b 2 and S 3 are obtained by solving Keplerts equation by
successively approximating _/, to satisfy Equation (9-108). The method, described
in Reference 2, is summarized below.

After initially estimating a value of q_, the quantity k is calculated from

k = a_b2 (9-110)

where •

a = R0"R 0 - 2_/R 0 (9-111) :-Ii

The parameters C_, C1 ..., Cs are next computed as functions of

m

9-£_

, .... ,- ,,_, , _,_........, , .................. _. , _i
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3Cs = (! + (1 + (1 + (1 + (1 + (1 + (1 + 19" 18 -_ '--3"-l-J J'--"_/f-?-6/Io

' i c 4 (1 + (1 + (1 + (1 + (1 + (1 + (1 + 4 ," 18"1

i '

(9-112)

1

C2 = _ + _C4

i CI= I+kC,

CO = 1 + XC 2

• I
and $1,8 2 aad S_ are calculated as functions of C 1, C., C a and qJ

S, = C,_,

S2 = C2@ (9-113)

S3 C3'_'

The time interval between the point correspond|ng to _ and the reference cpoch ;,
to is determined from Equatio_ (9-108) to be

T(_,]= I_S, _ _oS2 + gS3, (9-!14)

and the geocentric radius corresponding to _bis

R(_): l%q +%s,+_s_l (9-.11s)

" )" 9-29
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Figure 9-.4. Range and Angles Method Computational Sequence
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J
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- r The difference between the &=,sired time increment r ,:and r (_) is /

_, Ar = r i - roSl(_b ) - o-oS2(_) - _$3(,_) (9-116)

t

• The successive approximation scheme involves correcting _ in order t_ cause _r

: to vanish. The fint_ difference form of Equation (9-104)

ti - to

" _i - R (_here _b=-0 at t = to) (9-117)

aids in determining the iterativecorrection algorithm

_ ,/, _ (9-118)_' _"k+ I "Y'k "

a R(_ k ) /

When the solution has converged, the value ¢_ which yields r is obtained.

J Vai,les of S 1(_h) and S_(_i) are a by-product and are used to determine fi and
gi by means of Fquai:i_.r. t,q-105).

Repeating the precedL_g process f¢ • the data times t_, t:, ..., t_, the values of
f_ and g_ for i = 1, 2, ..., m axe obtained for su[stitution into Equations (9-98)

and (9-99), along with data measureme_ts R1, R2, "'" R_" These equations yield
new estimates of R0 and _0 to commence the next iteration. This computational
sequence is shown schematically in Figure 9-4.
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APPENDIX A

T_AJECTORI _NSOR SYSTEM FUNCTIONAL
DESCRIPTIONS AND PREPROCESSING

J

The trajectory sensor systems meas-xre the various prop,.Vatton charactert. :Jcs

of electromagnetic or optical si_;aals transmittvd batweea the satellite and tl ..ck-

ing stations (or o_her reference sources). These dal-_ are subsequently lined to
determine _ne =atellite trajectory. The dependence of these mea_urernents upo-

the rel.tPJe states of the spacecraft provides the key to the orbit determ_nsti_a
process.

This appendix provides a brief functlcnal description of the trajectory senring

,- systems currently included in GTDS. It also describes the procedures fol!o-_d
: in preprooessL_g the data prior to GTDS plocessing. These computations are

independent of GTDS and are presented primarily for informatio,,al purposes.
_ HJwever, they do provide a_. insight to the condition of the data at the prepvecessor/ /

processor interface which is n_cessary in order tc understand the processor
measuremen_ model o described in Chapter 7.

A. 1 GODDARD RANGE AND RANGE-i_ATE (GRARR) SYSTEM AND
APPLICATIONS TFCHNOLOGY SATELLITE RANG.E A1TD IitNGE-

RATE (ATSR) SYSTEM

A.].I Functional Description

The GRARR System (Reference through 6) and the ATSR System (References _,

5, and 6) determine and record spacecraft range, rauial velocity a_d angular position.
GRARR a: J ATS.. Systems are located at the tracking sites shown Ln Table A-1.

Tt_ese systems transmit a continuous wave signal from the tra¢4dng station
antenna at a carrier frequency .:. which is modulated by a low-frequency ton-,
UL" This signal propagates t_ £he spacecraft's omni-directlonal antenna, where
*.he received freq ency v_ appears _o be sllghfly different from that transmit,ted

(z r) because of the up!ink Doppler shift. The received signal is mod_,fied by the
_pac_cr_t transponder electronics and retra_:sm, tted back to the ground-tracking
station. Again, the signal ex!__riences a dew, link Doppler _nift so that the

frequency : R received at the ground differs hem that transmitted to the space-
craft. The 30-foot diameter ground ,'eceiving antem_a is aut'_n,.atieally steered

through t_o gimbal angles, X_0 and Y_0 _,r A ._.:_.-',, shown in Figure A-l), to

A-1
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' Table A-I

"; G_ARR and ATSR Stations >

l Frequency, Independent Gimbal _

I Hardware Angles , _GRARR Stations

Rosman, North Carolina Yes X30' Yso
Orroral Valley, Canberra, Austra!ia Yes X3o, Yso

Tananarive, Malagasy Republic Yes X3o' Y3o i
Falrbanks, Alaska Yes Xso, Y3o _
Santiago, Chile _ No X3o' Y30 :

ATSR St:_'tions

(

• Rosman, North Carolina No X3o ' Y30

. Mojave, California No X30, Y3o
-_ Toowoomba, Australia No A, E /i

Kashima, Japan _ No A, E "" "_

4

maximize the receivedsignalstrength.As thesignalisprocessedthroughthe ";
ground electronics system, the spacecraft transponder modification is undone
and the transmitted carrier frequency is subtracted. At the output, the differ- _
enced Doppler signal (reflecting the uplink and downlink Dopplec shiftc) is !

modified by the addition of a bias signal of known frequency 7-'b .

Three different types of measurements result from signals received during the ".

"frame" time interval which begins at "frame" time tF: '

1. The gimbal pickoff angles, X and Y or A and E, defining the direction of

:: the received signal path at the antenna at time tF, are recorded in degrees ",.
and decimal fractions. ,_,

• 2. The two-way range time delay is measured as a count C ef the number ,_
of cycles of a reference frequency 7,R1 occuring between positive- / ,:.
dire, ted zero crossings of the low-frequency ranging tone (frequercy = "L)
assoc_ated with the transmitted and received signals. The counter is

started and the frame time t_ is signaled simultaneously by a zero
crossing of the transmitted signal. The counter is stopped by the ne::t

: zero crossing of the received signal. Since the lowest sidetone :.

A-2 _--t ;

I
u_
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FigureA-]. Schematicof GRARRGimbolAngles 'r

frequency for the GRARR System is 8 Hz, the maximum unambiguous /" -

one-way range measurement corresponds to a distance of approximately

: i ) 18,737 kilometers. Distances greater than this produce phase shifts :..
larger than one cycle of the _L signal. When this occurs, the GRARR
system utilizes a pseudo-random binary code to determine the r__ge

ambiguity number p., the number of whole cycles to be added to the
:_ counter-measured fractional phase shift. The ATSR Systum does not

require an ambiguity resolving system since it is used only in conjunction 4'
' with ATS synchronous satellites which remain in the same ambiguity _.
, period during a pass.

: . 3. T_e two-way range-rate measurement is made by counUng the number of ,

: _--! cycles C O of a reference frequency _R2 required to count exactly N
i ('yclcs of the Doppler-plus-bias signal _d + 7"5 in the Gt'ARR System

, , and 100 times _d + _b for the ATSR System. The count also is
started at the frame time t F and ended after the accumuJation of N: ,_

• f cycles of the _0 * _b signal. All GRARR Stations except Santiago
_, have been modified to remove the dependency of C 0 on the indepenC _nt

_ frequencies _b and _r2. The modification amounts to deriving the .
reference and bias frequencies from the same source as the trans-

: i mitted frequency.

[ The gimbal angles X3,0 and Y30 (or A and E) are measured only at the frame
: ii time t FP but the range and range-rate measurements are made at the frame

,_ time and at three subsequent data sample times t within the frame-time
' ' S

_'" &-3
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I
interval. The spacing of these data samples (and hence the time span of a data

• frame) may be varied to give range and range-rate recording rate_ of 4, 2, or 1

i samples per second or 6 samples per minute. ATSR Stations can _lso record at
a rate of 8 samples per record. The data, one angle sample and four range and

:'i range-rate samples for each frame, are punched ou paper tape at the tracking
station in standard Baudot 5-level teletype code and then transmitted to GSFC i i

via teletype to be preprocessed. :_

A.1.2 l>reprocessing Description :_

)- The GRARR and ATSR data processing procedures and tnterface_ are obtained
from References 1 through 6 and have been revised to reflect subsequent

modifications in the software. Emphasis is placed on the preprocessor compu-
tations, but the interfaces with the stations and the processor are also incluaed.
Figure A-2 summarizes the station/preprocessor/processor interfaces and will
aid in the ensuing description.

.J

/
" fhe data are formatted into trames at the station. Each frame contains four

sets of r_ge and range-rate observables C_ and C 1 , as well as a single set of J

: "_- gimbal angh, s Xs0 _ Ys0 (or A and E). Each frame is time-tagged in station /
time t R. Prior _,_transmission to the Goddard Space Flight Center, data calibra-

: tion corrections aze applied to the data, and the time tag is corrected for the
propagation delay of the WWV signsl from transmission to its reception at the ]
tracMng station, i.e.,

tF = t R + At (A-l)

Thus, t F corresponds tothe UTC time at initiation of the range ',ounter. Each ,:

range observable C1 is divided by the reference frequency _R1, thereby ._

•, converting it to a time interval At R with a standard transponder delay /__ '_
"" accounted for as follows i

C 1

At R =__- A_ (A-2)

, where

AT = _0 for S-Band
[_17.1_zsec for VHF

; A-4
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'_ 0bservab_es Station Preprocecscr Processor

i tf, Co, CI tf= tf +L1tlw v t.= tF +KAt +At_ &t2=o'/C _

'i - RD
l q

l X3o' Yso AtR =Cl/vm l-A_ p, =cAt_ t R= t -_t_

: 2 s

_c(v_-Nv',/co)._ GRARR =p, (p __)

._; * J2v T - (v b- NvR2/C0) Santiago P.._ v-_A_mos_Uer;+C clVL _"
_" J c(m I -m2N/C0) GRARR Refraction

'°,vz =_] (2_ms) _m2N/Co) Frequency Correction

:- Independent .

I c(ub - N Vlt;i/Co)I

L200 VT- (v b _NvR2/Co) ATSR \

FORMATA FORMATB

_ Is' IT /
- Xso, Ate, CO,D, H, M, S, Ate, CO / *

/ ts, p', _.v , X y / "J" "_
• . 8 ' ,i Y3o' Ate, CO, Is, IT, )'I"' n, Ate, Co! '

D, H, M, S -_ Day, Hour, minute, seconds of time t F

I s, I T _ Satellite and tracker identification r
• ,A

,\ n _ Sampling rate indicator , ,
-\

_^ _ ltm'_ge ambiguity number

V L _" Lowest sidetone frequency ' ,:

_?, ZD-D " Standard transponder delay (AT = 1'/.1 ysec for VHF and 0 for ":
t S-Band) applied at the statien, and deviation from standard .

: delay applied in the processor _;

FigureA-2. GRARRandATSRDataPreprocessorComputo':onsandInterfaces

i
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Each frame of data is received at GSFC in approximately format A in Figure ] ;
A-2 (data quality, carriage return, line feed, and figure shift indicators are
omitted). These data are then preprocessed as described in the following sections. !

' A,1.2.1 Gimbal Angles

, The gimbal angles Xs0 and Ys0 (±00.00 to - 90.00 degrees) or A (000,00 to .
360.00 degrees) and E (000.00 to 090.00 degrees) are unaltered in the pre-

' processor. Atmospheric refraction corrections must be applied later in the !
processor.

t\

A.I.2.2 Range

The range observable C I iscorrectedtothetwo-way propagationtime interval

At R at the station. In the preprocessor, the iuterval is converted to one-way
distance by multiplying by one-half the velocity c of the signal propagation as
follows _

p, = c At R (A-3) / ':

t

where

c = 2.997925 x 10a m/sec ':
i

q

The preprocessed range p' always lies in the first ambiguity period and must, ..

therefore, be corrected for range ambiguity in the processor. Furthermore, _
the transponder delay is a function of the received signal frequency at the space- t
craft transponder_ Therefore, any deviations from the standard transponder
delay deducted in the preprocessor must be accounted for in the processor. The '!

time at each of the four range samples within each frame is :

t s = t r + k _tRD (k = 0, I, 2, 3) (A-4) (

where

s

AtRD "" the reciprocal of the recording rate

t

I.

A-6
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+ i:
_ The time t, is the ground receive time in UTC, corresponding to each

_ range sample. The range and gimbal angles correspond to the spacecraft's
,_ position at the time it retransmits the tracking signal. Therefore, the times must

+ be corrected for the one-way light time in th_ processor. The gimbal angles

_ correspond to the first time (i.e., k = 0 iu Equation (A-4) on each frame), i

: A.1.2.3 Range-Rate

The interpretation of the Doppler cycle count CO as a measure of the tracking
station-to-spacecraft relative range-rate rests upon the following assumptions:

}
(1) The Doppler effect can be adequately represented by the theory of

special relativity.

(2) A simplification can be made in representing the motion of the tracking
station.

;/I
, , Assuming the tracking station motion is uniform in inertial space, it is shown in

: i Appendix C that the average range-rate (in the sense of the Theorem of the Mean) ,,
? f over the time interval t s and t s + AtRR is / ;

" I C(Vb - N/_tRR) (A-5)I - ('b -

where the Doppler-plus-bias count time interval AtRR is

' Co
AtRR - (A-6)

• t

' Equation (A-5) is used for the GRARR station at Santiago. Since ATSR stations '
_- _ count N cycles of 100 times the two=way Doppler-plus=bias frequency, the range-

rate equation for the ATSR station data is

}
C(U b -- N/AtI_ )

! P"_g = 200 VT (v'- N/AtR_ ) (A-7)

i

_

i, The average range rate /).vg in Equations (A-5_ and (A-7) is dependent on the _

i three frequencies 7)T, l)b, and "R2. Four of the GRARR stations were modified

by driving Yb and vR2 with the transmitted frequency VT, i.e., }

+ 1
i = _"R2

i V+ mI VT - m_,_T (A-S)

: *_ A-7 i
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: where m1 and nh. are the following constants.

GRARR Stations raz m2

; Rosman " ""

VHF Crystal 1/5000 1/15 i
:. Tananarive

:. . S-Band Crystal 1/3600 1/180
Carnarvon

S-Band PLL* cr/4500 cT/225
Fairbanks

I
L_....

*or= phaselockedtranspondermultiplicationconstant(Reference4).

£

i, Substitl_ting Equations (A-8) into (A-5) yields the relation for preprocessing
_! Doppler data from these frequency independent GRARR stations

_* i c(ml - m2N/Co)

• '_ /_.vg = (2 - ml) - m2 N/C--'-'o (A-9) /,,

A more precise modeling of the Doppler data is pzovided by the range difference
formula in Appendix C. In this optional processing mode, the preprocessor

,, ' compu_as

__ c
2_TAtRR (_b AtRR - N) (A-10)

• rather than/b go The processing program compares p with the range difference i_
' calculated by Equation (7-,11 ).

A.1.2.4 Smcothtng

The range, range-rate and gimbal angle data are finally smoothed by regresstvely
fitting low order (third or fourth) polynomials to at least 20 samples each of range
and range-rate and at least 5 samples each of the gimbal angles. A least squares
method is used for the polynomial fits, and a 2.5_ data rejection criterion is used /
to eliminate "wild" data. The midpoint values of the polynomials replace the
original data, The smoothed values are stored in a format similar to format B
in Figure A-2 for subsequent use in the processor.

A-S
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A.2 C-BAND RADAR SYSTEM

A.2.1 Functional Description

The FPQ-6, FPS-16, TI_Q-18, and MPS-26 pulse radars used most frequently to
i

support NASA satellite tracking are listed in Table A-2. These radars measure
the two-way light time from the antenna to the spacecraft as well as the antenna
pointing angles. The antenna Gimballing system records the azimuth and elevation
angles A and E shown in Figure A-1.

The usual mode of tracking a satellite via a C-Band radar is similar to the
GRARR System. The two-way light time of a transmitted pulse and associated
gimbal angles are measured and time tagged at the ground receive time of the
return pulse. The range messurement is corrected for satellite transponder time
delay, and the time tag is corrected for system delays and WWv propagation time

delay. The resulting two-way time is converted to units of distance by multiply-
ing by one-half the speed of light. These corrections are performed at the track-
ing site. There is no range ambiguity or range-rate associated with this tyl;e of

system. ,,
t'

Table A-2

._)_-i C-Band Radar Sites

i 1 Station Locations Type

| Bermuda FPQ-6, FPS-16
Grand C anary Island MPS-26

i Carnarvon, Australia FI_-6
Woomera, Australia FPS-16
Hawaii FPS-16

,I,, Point Arguello, California FPS-16 '
Eglin Air Force Base FPS-16
Patrick Atr Force Base FPQ-6

Cape Kennedy FPS-16
Grand Bahama FPS-16, Tl_-18
Grand Turk TPQ-18

l San Salvador Island FPS-16

Merritt Islsnd TI_Q-I 8 :

Ascension Island FPS-16, TPQ-18 _

_ A-9
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A.2.2 Preprocessing Description 1

The data received from the C-Band tracking site is calibrated, corrected for ..
transponder delay, and time corrected. The p_eprocvssor converts the range
data from yards (received from the station) to kilometers (1 meter equals _ii'

3.280839895 international feet) and the gimbal angles from mils to degrees (6400
mils equals 360 degrees). The time tag corresponds to the ground receive ti_-3.

• Capability must be provided in the processor to account for atmospheric re-
fraction and light time correction of the time tag.

7.

i A.3 UNIFIED S-BAND (USB) SYSTEM

i A.3.1 Functional Description

,! The USB System (References 2, 5, 6, 7 and 8) determines and records the

f ," I spacecraft range, range-rate, and antenna gimbal angle positions at the globally

located sites listed in Table A-3. The USB transmits :track_.ng System a con-

*_t tinuous S-Band carrier s._.gnal with a modulated pseudo random code. The nominal t'" :_
up-link signal frequency of 2 GHz is multiplied by a constant (k = 240/221) at "Y
the coherent spacecraft transponder, and retransmitted to the receiving stations.

Table A-3 )

Unified S-Band (USB) Stations ?

USB Station Antenna Size, Feet '°

2-Merritt Island 30, 30 ,_
Bermuda 30

C arnarvon, Australia 30
:tawati 30

".. Corpus Christi, Texas 30
Guam 30 '

2-Goldstone, California 85 and a 30 oriented as a_ 8b ' '_

Pioneer 85 hr, dec angles .;
Ascension Island 30

¢

Canberra, Australia 85 i:,
Tidbinbilla, Australia 85 hr, dec angles _

, Madrid, Spain 85 , ?,
Cerebros, Spain 85 hr, dec angles ' |

Grand Canary Island 30
2-Greenbelt, Maryland 30 and a 30 oriented as an 85

Vanguard Ship 30

• ,

A-IO
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[ "
The USB System range measurement i$ made by means of an autocorrelation
involving a pseudo random code which is modulated onto the S-Band uplink carrier
and coherently turned around by the transponder. The locally generated code at _ _"

the ground station undergoes a variable delay when compared with the received _., f_
code, which has undergoue a two-way propagation delay. When the inserted ground i i_

s_ation delay equals the two-way propagation delay, the autocorrelafion has a _

maximum value and the inserted ground time delay is a measure of the slant
range. With the "long code" or nor hal pseudo random noise code, the USB range

measurement is unambig_ou_ to a ra _e of 800,000 kin. Normally, only one _uch =
"range acquisition" is made over a single tracking station, and subsequent range

• readouts are obtained by upd_ing the initial meas._rement by integrating a "clock :
• Doppler _Tsignal.. That is, once range acquisi_ton is made, the ranging code is

i switched off and a clock modulation is _witched on. The relative phase change :

of the clo_k signal, as relayed via the _pacecraft, is then a measure of rangechange. As presently configured, the clc : is not an integral submultiple of the

• _ carrier frequency, however, the smallest increment of range change in the tra_k- _
ing format (termed the range unit RU) corresponds to approximately 16 cycle_

_i. of two-way carrier Doppler change. Thus, whenever the vehicle moves a
radlgl

[ distance c[ approximately 16 half-wavelengths of *he carrier frequency relative // ((

i to the ground station, one RU is recorded. One RU corresponds to 1.e496936 -_ _
meters of range. The range update is done at the tracking site and, from an

_ equipment standpoint, is ess_u_mlly independent of the carrier Doppi_r tracking i
- - _nformation which is also contained in the raw USB data format. O_ly tb_- re-

: ceiv_r radi_ frequency and intermediate frequency stages are common to the
range and r_nge-r_ channel_.

The raw time tag associated with the range corresponds to UTC ground receive i
time and includes an on-si_ correction for WWV propag',tion time delay. Typ-

ically, all USB r,_mote site clocks are synchronized to the Naval Observatory _ _
Master clock to within 50 microseconds. The USB dish antennas employ an

X-Y gimbal mounting _ystem (see Figure A-l). The 30-foot diameter antennas _
employ an X_o-axi_ aligned North-South, whereas the 85-foot antenna X ss-axis

; is aligned East-West. The X-axis is always contained in the local tangent _ . i

_ plane. , =.

i_ _ii,,_ basic measurement of range rate in the USB System _ that of carrier frequency _

_, Doppler pnase change. The down link carrier from the spacecraft is coherently ,_
tracked by e pha_e-locked ground receiver. The essential system functions are: ,

_ 1. The up-Hnk carrier has a nominal fixed frequency of 2 GHz derived
_ from a cesium clock source.

_' A-II , :'
t
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2. _2he transponder receiver aboard the spacecraft is phase-locked to the
_ up-lin_ frequency plus the up-link Doppler shift.

: 3. The transponder transmitter frequency is coherently derived from the _i
- up-link carrier plus up-link Doppler shift. A fixed frequency turn- _

L around ratio of 240/221 is used for _1 USB tracking. _ i

_ 4. The ground receiver is phase locked to the do_n-link signal which is at
_ " the transponder output frequency plus the d m-link Doppler frequency i

shift, l
t: -"

5. In the 2-way mode, a 1 MHz _gnal is subtra_ed from the ground
/ receiver _Agnal prior to compariRor wit_, a signal which is coherent

with the transmitted carrie_ zre_,ency. '"he basic output is then
the Doppler frequency plus a stable 1 MHz bias. "r

_ / The raw data consists of whole cycle counts of phase change, which is a diz oct
: measur_ of the spacecraft radial change relative to the station. The b_!

moasurement N is a nondestruct cycle count of carrier phase shift, plus bias

"-- over a time period AtRR. It is termed nondestructive since, although tae counter _ /,' ;'
is read out at even time intervals, the accumulated count is not destroyed. Thus, _'"
the _¢erage frequency is obtained by differencing the count in adjacent frames

and d'viding by the sam vie time. I

The Doppler count N zs resolved to .01 cycle through the implementation of the
Time Increment Resolver (TIH). Cycle resolving gives a precise measure of
the time between the start of the data interval and the time at which the last

positive-directed zero crossin_ of the biased Djppler signal is counted. This
time duration is measured by countir.g the cycles of a 100 MHz oscillator. T_e
Dcppler count, along with the TiR count, w_:i appear in the same data trans-

',, missionframe. Inthehighspeed format,thegranularityof TIR is i0 nar,o-x

seccr.ds, while in the low speed format, the granularity is 40 nanoseconds.

The normal low speed data rates of the USB system are one frame per six ,
seconds and one frame per 10 seconds. This low speed data is derived on-site
from the high speed data, which consists of a 240 bit iormat. High speed data is
simultaneously available _t a rate of 10 frames per second, 5 frames per second,
or 2.5 frames persecond, depending on the r,pera.'or selection at the on-site USB
data processor. USB sites are capable of obtaining gimbal angle sad range rate
data _thou_ ranging in contrast to the GBARR system which always provides
range data.

A-12 _'"
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A.3.2 Preprocessing_Description I

The USB ranze data t_ transmitted from the sites in octal with a granularity of
1.0496936 metsrs. The output of the data handler is the one-way range in
kilometerswithno dat_ correctionsapplied. _,,

I

The N-count and TIR requiredtocompute range rateare trJJnsmi_tedinoctal _
with a granularity of I cycle and 40 nanoseconds respectively. The 1-way and

_ 3-way Dopplerare convertedto range rateinkrn/secthroughthe equations !
,/

t
' _. FOC = _(t) -N"(t - AtRR , (A-I1) i """- --_RR 4 * C(t) * 10 -8 ';"

\

N*(t) = N(t) - FOC (A-12)

l

_._g N*(t)-N*(t-AtRR ) 10 * c (A-13) "J _;i = ...... &

L AtRR 2KvT

i(' " _

" _ where k

f FOC = fractions of a cycle ,_
! N(t) = contents of Doppler count,er at time t I

N'(t) = Dopplercounterattime t correctedby TIR
C(t) = contents of TIR counter i ,'

¢ &.t_R = sample i_tervalofthe Dop._lercountez

_i{ P,,vs = average range rate
,: c = speed of light
L

_ K ffi transponder turnaround ratio (240/221 for USB) .

, '_ _r = transmitter frequency.

_ The angular measurements are the X and Y gimbal angles, with the 85-foot sites
"- having the X-axis aligned East-West and the 30-foot sites having the X-axis

aligned North-South. The data are transmitted in octal with a granularity of
!, 6.8664× I0-4 degrees. The datahandleroutputsthe anglesinradians.

_ The time tagassociatedwithallUSB angledataistheground receivetime

i corrected un-site for WWV propagation delay.

" _ A-13
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, A.4 MINITRACK SYSTEM :

A,,4.1 i,'unctional Description !
; J

+ _ The +Minitracksystem, References 5, 6, 9 and 10, is basicaUy a radio direction ,,i
fir.ider which utilizes the interferometer principle to locate a radiating transmitter
carried by a spacecraft. The Minitrack network is composed of seven stations, _ ?_
globally located as sho:m in Table A-4,

_j o !,
Table A-4

Minitrack Stations

+ Quito, Equador

,_+ Santiago, Chile

• Winkfield, England :":

Johannesburg, South Africa

, Fairbanks, Alaska .

: _'-- Orroral Valley, Canberra, Auztralia /

Tananarive, Malagasy r.epublic

Each system consists of a series of six horizontal baselines at each station,
three oriented east-west (EW) and thre_ oriented av.'_a-_oum..... (N,3), .__+_hownin
Figure A-3a. A fixed ante_._a system is located at each end of each baseline to :-

receive a nominal 136 MHz signal transmitted continuously from a spacecraft ++

as it passes within view of each _tation. The spacecraft trmasmitter frequency i
can be preset to any of 2000 frequencies between 136.000 and 137.999 MI-lzin _.
steps of 1 kHz. Each set of three EW or N3 baselines consists of a fine, a :c

-.. medium, and a coarse baseline. The fine baselines are accurately surveyed to
"_ be 46 or 57 times the vacuum wawZ,ength of the nominal 136 Mttz signal. The i"

! medium and coarse baselines are 4.0 and 3.5 nominal wavelengths, respechvely.

The principleunderlyingthe_"initracksystemi_illustratedby thefollowing ,,,
simplified two-dimensional case (see Figure A-3b). The spacecratt transmitter '+
is assumed to be located _t an elevation angle a and at a very large distance ::
from the station so that received signals appear to be 91anar wavefronts, e.g.,

BC and BvC'. The baseline distance AB is a multiple Ns of the nominal 136 MHz
vacuum wavelength. At any given instant, the phase of the signal along the
propagation paths ACt and BB' is characterized by _he two sinusoids shown in _:

r

A-14 REPROPUCIB_tLrrYOF TIIE :.
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(at 1 (b)

FigureA-3. MinitrackBaselineandSignalReceptionGeometry / _'

!

Figure A-3b. The s_parate signals received by the two antennas at A and B arei ,
" i 1! fed into a phase counter which measures the phase difference between the two

signals, normalized to a fractional part of the received si%ual wavoiength, e.g., '_
_ ' aF in the figure. This measurement gives no information concerning the addi- ,
: , tional number of whole wavelengths which occur between the signal received at

antenna A and the signal received at antenna B. This ambiguous integral number, :,
i
i as well as the fractional phase displacement itself, is dependent upon the wave- :

length of the received signal _., the length of the baseline NF, and the spacecraft _ ,
i angular geometry a. Thus, the reasonfor the multiplicity of parallel baselines !_ "'_! , f

•,,, ,".e., 46 or 57, 4 and 3.5 wavelength bases) is to resolve the integral cycle count , ;
_ ,, ambiguity on the longer (fine) baseline. This resolution is accomplished by "

synthesizing a 0.5 wavelength measurement by differencing the 4.0 and 3.5 wave- ., ;
: length baseline phase difference measurements, i.e.,
?

I
J

: "a0. S = a4.0 - a3. S (A-14)

, •
i where _ indicate_ absolute phase difference. _,
i

i It would be impracticalto builda 0.5 wavelengthbaseline,sincethe antennas ,,"+,

" _ would physically Interfere with each other. The synt.hesized 0.5 wavelength phase

" A=I5

' i
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4o difference go. 5 is unambiguous since the extra path length, corresponding to f ,
: AC in Figure A-3b, is less than one wavelength. By similarity of triangles in
,_ the figure, the absolute length of the path AC may be estimated from the 0.5 wave-

length value as follows ,

N F _ ;

" aF = _ ao. s 1A-15) .

* • where N F = 46 or 57.

In practice _-0. s is not precise enough to be used directly to obtain _F; therefore.
a slightly more complicated process is used to determine the unambiguous fine

=_i phase difference a-F, Knowing _, the direcUon cosine is ;-

Ac /A 1_1. cos ¢ =_ = _ _-'_-_-'-'1
AB AB

: For the three dim=nstonP_l case, the corresponding ratios ob+.ained from the EW
. and NS phase difference measurements yield the direction cosines ,f. and m of - -

the signal path at the station,

Each fine baseline has its own phase difference counter; hence, two measure- . i
F

merits (EW and NS) are recorded simultaneously. The four ambiguity baselines
, (EW and NS, medium and corxse baselines) share a single counter through a

_ multiplexed digital recording system. Since all measurements cannot be made i

, simultaneously, the sequence of recordings for each data frame occurs according "_ *_'_
- ",_. to the schedule of Table A-5. These data may be recorded at the rate of one
; frame every 1, 2, 10, 20, or 60 seconds. The fine baseline counter registers
'} a decimal number between .000 and ,999, and the medium and coarse baseline , _

counter registers a decimal number trom .00 to .99. "
r_

' {,The frame rate is generally scheduled so that 31 frames give complete coverage
of the usable data for a spacecraft pass over a station. A message consisting ' _ ,{

• of up to 31 frames is punched on paper tape at the tracking station in standard _ , .{

Baudot g-level teletype code and transmitted via tel.etype to GSFC for preprocessing. " i

5

"_ ;
A-16
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Minitrack Counter Sequence

Time Registered by Initiation of Both Initiation of Ambiguity ,:
Minitrack Data Clock Fine Baseline Counters Coauter and Baseline Sampled _ :

I

t F* X E-W Medium :

t F * 0.2 sec X E-W Coarse _ :

t F + 0.4 sec X N-S Medium :_

_ t F + 0.6 sec X N-S Coarse , 5

t F + 0.8 sec X

• t F = UTC at the beginning of the frame.

A.4.2 l>reprocessing Description _)

i I The Minitrack preprocessing procedures and interfaces are obtained from /_

: i: References 9 and 10 and have been revised to reflect subsequent modifications -_
_ to the software. Figure A-4 summarizes the station/preprocessor/prooessor

: interfaces and wili aid in the following description.
/ I

At the Minitrack station, the fine, medium, and coarse phase difference measure-b

merits are sampled and recorded in frames, as described in Section A.4.1. The

' time-tag t_ for each frame is corrected at the station for the propagation delay
: of the WWV signal from transmission to reception ,it the tracking station. Thus, :

t_ corresponds to UTC time at the beginning of 6_cll frame. Each frame of data
is transmitted to GSFC in approximately format A ,_f Figure A-4 (the data signal) i .'i
strength indicators are omitted). These data are then preprocessed by rectifying ' :

\_ the shift in whole cycle counts between consecutive fine, medium, and coarse phase :
difference measurements, and then least square fitting low order polynomials to
the data. Electronic system filter delays are corrected in the polynomial time '

variable, and calibration corrections are applied to the data. =

k

The ambiguity correction for the fine phase data is determined from the
medium and coarse data. At each output time, a 0.5 wavelength baseline phase _ _

i difference ao.s is synthesized from the 4.0 wavelength baseline (medium) data , "
a4. 0, and the 3.5 wavelength baseline (coarse) data aa. s . The medium and

I coarse data are obtained from the smoothing polynomial previously determined.

_ A-17
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Observables Station Preprocessor Processor

t • Sample observables • Linearize and • Atmospheric

a_wF , aNSF for each frame smooth data refraction
azw M, a.s u • Correct frame time • Time adjustment correction
aFwc, nNsc forWWV propaga- and zenithcall- i

tiondelay bration

. • Ambiguity

resolution
-_' • Antenna field

correction
• Conversion to

direction cosines

: Ambiguity Finedata'_ Is, IT

2 2 [ ..J

"- tF" t
:: "_ H, 3 _3 f
#' %W F _LNSF /

i. [.. D, aNsc, a_WF,a_SF/ \ _-----_._.__ ..1'

: D, H, N, S _ Day, hour, minute, and seconds of time t F

Ip "_ Indicates polar antenna (NF = 57) or equatorial antenna "L
\_ (_ = 46)

• I s, Ir _ Satelliteand s;ationidentification _.
k

) alj _' Phase diffe:yence measurement

i _ NS (North-South)or EW (East-West) :

j "__'_.ne(F),medium (M) or coarse (C)baselines
ft,

k _"kthdatapointwithinframe

,£, m _-Directioncosinesof receivedsignal

Figure A-4. Minitrack Preprocessor and Interface Schematic
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Because of its short baseline, the synthesized 0.5 wavelength baseline data is an

absolute (unambiguous) phase difference (the bar denotes absolute phase
_ difference). Were it not for inacct, racies in a0.s, it ceuld be used to deternVne
• the ambiguity correction for the fine d'ata. In order to minimize the amplification

': I of these measurement inaccuracies, a0.s is used to correct the ambiguities in
. _ a a. s and a 4.0, which are then used to synthesize a _. 5, corresponding to a fictitious 7.5 ,

t wavelength baselino resding. Finally, aT.s is used to correct the ambiguity in
l the 46 or 57 wavelength baseline fine data. This stepping process is described

i mathematically in Section A.4.2.3.

t At each output time, the absolute fine phase difference data are corrected for

( l antenna field corrections and converted to direction cosines for use in subse- _
i quent processing. Data at different output times from the same station are
i correlated by means of the smoothing polynomials which are used to replace

: '_ the actual measurements.

• ?

_;_ j followingThepreprocessingsections,steps summarized above are described in more detail in the

/ A.4.2.1 Data Linearization and Smoothing
i! I

As stated in Section A.4.1, up to 21 frames of data are recorded lor each space-
craft pass over a station. Each frame of data contains five fine, one medium, ::

and one coarse baseline phase-difference measurements from each East-West

(EW) and North-South (NS) baseline set. Thus, up to 155 fine, 31 medium, and 31
coarse baseline measurements are recorded from each of the EW and NS base-

line sets for each spacecraft/station pass.

_ The fine phase difference counte_s register only from .000 to .999; therefore, it

i is possible that the absolute value of the difference between consecutive readings ,

may be numerically larger than .500. This is assumed to mean that a new cycle
crossing occurred between measurements, and that the measured data should
be rectified by adding or subtracting a full cycle count to one of the points. This

i process of rectifying the data by converting to nonmodular number sets Is called _linearization.

i,

a

" A-19
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A.4.2.1.1 Ambiguity Data ]

The ambiguity u _a (medium and coarse baselines) are linearized first since it
is less likely that the phase difference will exceed +.50 between consecutive
points with these data. The linearization is accomplished as follows:

(a) Beginning with the first, phase difference measurement,

, the difference between consecutive points is calculated, i.e., ;

?

_ = ai+ 1 - a. (A-17)

(b) If _i lies within the range -.500 < _i < .500, no rectification is

necessary. If _i > .500, then integer multiples of 1.000 are subtracted

from ai+ 1 until $1 lies within the range -.500 < _, < .500. If $i <
-.500, then integer multiples of 1.000 are added to ai+ 1 until _ lies
within the range -.500 < _ < .500.

• (c) The index i is then updated and steps (a) and (b) are repeated until :'
all phase difference measurements have been rectified, j

This linearization process is applied separately to each of the E'¢; and NS medium
and coarse baseline data sets. The components of the resulting data vectors

bEWM,bNS_, b_wc, and bNsc have the correct relative phase, butthe vectors may
have an incorrect absolute phase.

After linearizing the medium and coarse baseline data, quadratic smoothing

polynomials are least-squares fitted to each of the four data sets. The polynomials
are of the form

bn = A n + B n 7" + C I"2

(A-18)

(n = EWy, EW c, NS M, NSc)

where v is the time measured from tFM, the fraJllO time of the midframe (middle
frame of the data sets), i.e., _ = t - t FM" When determining the polynomial :_
coefficients, the ambiguity data are tagged at their frame times; thus, each of the

polynomials is biased in time by the multiplexer time delay. The multiplexer
time delay is accounted for later when evaluating the polynomial. Ambiguity data
exhibiting unusually large deviations from the smoothing polynomials are rejected
during the fitting process.

A-20 v
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A.4.2.1.2 Fi_e Data t:

The linearization procedure for the fine baseline data is somewhat more complicated

than for the ambiguity data, since the phase change between data in successive ?
frames can exceed one cycle• Therefore, an approximation to the LW and NS

• , I

data phase change is estimated as follows, using the fine phase rate _F"

_i = ai+l - ai -_fF(ti+l - ti) (A-19)

• _ The fine phase rate is determined by averaging the rattoed slopes of the medium

_ and coarse smoothing polynomials at the middle frame time tF.

" +4.0/

_ !i NF Bc BMI (NF- 46 or 57) (A-20)

The quantities Be and B. are the coarse and medium phase rates from Equation(A-18) at the middle frame time, i.e., _- = 0. /

The fine phase linearization is accomplished as described in Steps (a), (b), and

[ (c) in the preceding section, but using the estimated difference givenby Equa-
i - _ tion(A-19). The components ofthe resultingdatavectorsbEw F and bNs F have
: the correct relative phase, but the vectors may have an incorrect absolute phase.

After line.zing the fine b_ehno da*,a, their time tags t are computed for
the appropriate sequential po31tlon within each frame by accounting for sequencer

i delay /xtp and for the counter delay in the phase readout digitizing equipment

: i At c , as follows

_, t = t F + _tp + ZXt (A-21) ;

; i
" where

_tp = 0, .2, .4, .6, .8

depend;ng on the relative position of the data point within its frame (see Table
_: A-5),and

i,
At = .01 ar7_ C

_ _ A-21
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: Cubic smoothing polynomials are then least-squares fitted to the li:,earized and
• time corrected EW and NS Rue baseline data. The polynomials are of the form ;

r

,, bm-A +B_ +Cm_"_ dDT s (A-22) ,.
I

(m=EWF,NSF)

. 7

where -r is the time measured from the middle point of each data set. The NS

". and EW midpointtimes tMmcalldifferdue tothecorrectionAt . Fine data ,_c
: exhibiting large deviations from the smoothing polynomials are rejected during =

: the fitting process.

Y

A.4.2.2 Txme Adjustment and Zenith Calibration

/ The four ambiguity polynomials and two fine baseline polynomials, in Equations ' :
; (A-18)and (A-22),areinconsistentinterms oftheirtime variables.The ambiguity

j'
,' /J

__ polynomials neglect sequencer delay and use a reference time equal to the mid- ,_ ,_
frame time tFm. The fine [olynomials use a reference time equal to the time of

the midpoint tM_ of each data set. Neither of the polynomials accounts for the
:: delaysbetween thetime thesignalisreceivedattheantennasand thetimes the _ ; :-

phase differences are sampled and tagged, nor do they account for calibrations :'
in the phase difference measurements. ,i

These discrepancte_ are accounted for by making the following corrections to
the fine baseline smoothing polynomials . "

b m " [A'm] + Bm'rm �C7-2 + Dmr_ (A-23)m m l

. where

A' =A -Z (A-24) :m m m

= t - t* (A-25)
m m

_':"

KF :

t*m= tM_ + 1--_O + gI - 0.4 (A-26)

1 (m = EWF, NSF) '_,

;' _ "

, A-22

?

J
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_ The correction terms are defined as follows: ,/

Zm ,_ zenith cnltbration constant which accounts for internal system
changes such as aging and maintenance of electronic components, _
phase shifts caused by antennas and feed lines, and unequal lengths

of cable connecting the antenna pairs , :

KF _ _!ay of approximately 36 msec caused by the fine filter

. KI _ delay of .120 sec due to the optional 2 Hz bandwidth filter when used

_ The 0,4 second delay in Equation (A-26) accounts for the difference between the

I time of the middle point tMmand the midframe time tFM. This term shifts the ;
reference time of the fine polynomials to that of the corrected mid_rame time.

• The notation [ ] denotes that the integer part of the number is truncated leaving

only the fractional part. This transforms the phase difference to the first

I. ambiguity period at the reference time.

t The ambiguity polynomials are corrected for sequencer and 2 Hz filter deJay,

:i _ their reference times are made equal to those of tbe fine polynomials, and call- ../ i

bration corrections ar_ applied as shcwn in the following equations. _

t
" " bn = CA'] + B_" + Cr 2 (A-27) :

i '
_ where

A' =An + Bn(tm*- t:) + Cn(t*- t:) 2 -Z (A-28)

I _- = t - t* (A-29) :

m

t '

}, t'n = tFM + At_ (A-30)

_, NSr for II,= NSM or NSc

A-23

t ,ii '
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The correction terms are defined as follows:

• Zn _ same as Z m above

_ td ,,. correction due to sequencer delay, plus a 0.15 sec delay due to a
2 Hz bandwidth filter in the digital recording system

I

_-0.15 for EW medium

0.15 for EW coarse

_td = 0.25 for NS medium (A-31)

,. 0.45 for NS coarse

The first three terms on the rigl_t in Equation (A-28) account (approximately)
: for the shift in reference time of the ambiguity polynomials.

j A.4.2.3 Ambiguity Resolution

The time adjusted and calibrated smoothing polynomials provide the proper 1 s

_ relative phase difference (time variation). The phase difference magnitudes / S
are reduced to the first ambiguity period when the constant terms A'

(n = EWF, EWM, EWc, NSF, NSM, NSc) are reduccd t_ their fractional parts [
in Equations (A-23) and (A-27). Since the time variation Gf the polynomials

is proper, the coefficients B, C (and D for fine polynomials) are correct and
only An' needs to be altered to accommodate the ambiguity resolution. Furthermore,

An' = b _ = 0) = _* is the smooth, time corrected, and calibrated ambiguous
phase difference at approximately the midframe time.

The stepping process, summarized at the beginning of Section A.4.2 and described
in detail in References 9 and 10, is now performed to determine the absolute ph'.se

differences of the fine baseline polynomials. Throughout the following descr_p-
• \ tion, [ ] denotes fracti.-mal part only and { ? denotes minimum phase differ-

ence, i.e., -.500 < { } < .500.

The absolute phase difference for a fictitious North-South and East-West 0.5

wavelength baseline is determined from the medium (4.0 x__velength) and coarse
(3.5 wavelength) baseline relative phase ,:lifferences b*. c a ld b_. s as follows

J

P
$

b0. s = {[b_. 0 .. b3.s]} (A-32)

A-24 _"
I
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:: The absolute phase differences for the medium and _. _rse l:=_ellnes are obtained
as follows . :

C

r

b'-_.s = 7 bo.s (A-33) +,
/

?

_i b3.s ='b;.s- (['b;.,- b; .j} (A-34)

J-+ b4. o : 8-be. s (A-35)

3

-- -- -- $

)+" b4. o = b4. o - ([b'4. 0 - b4.o]} (A-36)

J

" ?i]

: The absolute phase difference for a fictitious 7.5 wavelength baseline is deter-
:_ mined from the absolute medium and coarse data b4.0 _nd b3.s, as follows

?" b_. s b3. s + b+. o (A-37) .j
4

+,

l Finally, the absolute phase difference for the fine baseline is determined from
'" the absolute 7.5 wavelength baseline data.

,: b; = b 7.s (NF/7"5) (A-38)
t

-* {-_F - b;]} (A-39)_F =bF -

"\

: The above process is performed for both EW and NS baseline data. The result- "
: ing EW and NS fine baseline absolute phase difference polynomials are

bm('r) = b(_ -- 0) + B r + CZ2 + Dm_'3 (A-40)
j, -

s

• (m = EWF. NSF)

°_ where
¢

• _ : t - t* (m = EWF, NSF) (A-41)m {
J

': A-25 ,
!

++L ,++
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A.4.2.4 Antenna Field Correction
eL I

The calibration Z given in Equation 1A-28) is determined as an average ovel
the usable antenna field. There are dtstortioas In the field patterns, however,

and they are corrected by the following calibration polynomials operating on the

corrected absolute phase differencea, bNsF and bEWF, obtained from Equation i
: (A-40). These corrections are of the form given below

i :orrected L.._ I0 (A-42)

: '° 1%
i where the coefficients C_ are obtained by field calibration.

"_ A.4.2.5 Conversion to Direction Cosines
._ I ,i:.,,,./

The direction cosines _' r_.ndm' of the corrected phase differences are deter-

• mined from the corrected absolute fine ba_eline phase differences by dividing by -- ,
_ the distance between the fine antennas, expressed in wavelengths of the received '

signal. The fine antennas are positioned to be N F (4_ or 57) times the nominal

136.000 MHz vacuum wavelength. For tz_msmitted signal frequencies uT, the
baseline length in terms of the transmitted frequency is NFUT/136.000. There-
fore, the direction cosine of the received _ig_al from the station centered local
tangent east-pointing axes is

'\',. _, = (bEWF)co' 136.000 (A-43) i ,
• |_'F Vl-

and the direc'don cosine to the local tangent north-pointing axis i

( '
,136.0 00 /

m' = (bNsF)cor,ected _ _ZZ/ (A-44) [

A-26 I-

I
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Several aspe_, , _ . oce(h_'e _:fluence the accuracy and use
of direction _,:._ne da_ _ i,. subs ,_,_.,_ orblt r_;ete_mination processing. First,
the sampled da_a ar_ apffCximated_._, , _ _bic I_lynomial which is used to de-

termine the directS.on cosmes_ _1_._cubic polynomial can introduce time corre-
lated errors into multiple dire,_tton cos,_, poirs obtained from the same station
pass. Therefore, the vari,_uce of _be r,.yic,t:_ls between the cubic polynomial and
the data should be scrutinized, and cr,_ideration should be given to limiting
the direction cosine data to one pair pe_"station pass. Second, the received sig_ml
frequency in Equations (A-43) and (A-44) neglects the downlink Doppler shift
and assumes that the transmitted and received signal freq_encies are the _ame
(i.e., vR = VT)" Finally, the direction cosines _' and m' correspond to vacuum
signal paths. Thus, atmospheric refraction corrections and light time delays
must be applied in the processor.

A.b VERY LONG BASELINE INTERFEROMETER (VLBI)

Like Minitrack, the VLBI system measures the phase differences at two or more ,L./s
ground stations when they simultaneously receive the same radio signal. How-
ever, in the VLBI system each terminal is controlled by its own independent

i _ frequency standard so that there is no necessity to use cable or microwave links
to preserve the phase coherence among these stat".._ns. This permits the stations
to be separated by arbitrarily large distances, typically of the order of thousands
of kilometers. Since the angular resolution of any interferometer is directly
proportional to the length of the baseline, the VLBI concept permits the position
of the radio source (e.g., satellite) to be determined to a much greater degree of

i accuracy than is possible with a short baseline system like Minitrack.

" The principle underlyin_ the VLBI concept is illustrated by the simplified two- '
\_" dimensional geometry shown in Figure A-5. The figure shows a signal, charac-

terized ss a planar wavefront, being simultaneously received at stations A _nd

i! B, which are separated by distance D. The phase difference _ between the two "
received signals is related to the separation of the stations D as foilows

A_ --(D/h) cos _ (A-45) ,.

, A-27
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_ FigureA-5. SimplifiedSchematicof VLBI i

where _) is the source direction and K is the signal wavelength. When the value

, of 8 is such that A¢ is an integral number of half-cycles, i.e., 8 = oo_-_ (nX/2.D)
where n is ,an integ3r, the signals received at each terminal are in phase or anti-
phase, and a relative ex_remum of power is available from the interferometer.

As the source transits the inter_rometer, a power (or intensity) response like , .."

that shown in Figure A--6 is produced. The abscissa is time, which is rela_ed

monotonically to the sour_8 direction 0. Ifthe time a_ which a specific fringe is ]
produced can be determined precisely enough, the relationship for A¢ in Equa-

tion (A-45) can be equally precisely specified in terms of source posiUon and :.
baseline parameters. The fringe density is so srea6, however, that it i_ very

difficult to identify the central fringe (the fringe produced when the source diruc-
tion is perpendicular to the baseline), and hence very difficult to record accurately
the time of p_ge through any n th -order fringe (i.e., the fringe displaced from
the cantrai one by n cycles). _

/

FigureA-6. InterferometerFringes

/
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"_ The fringenumber ambiguityis resolvedby recordingthe receiveclsignal _
onto magnetic tape at as high a b_ndwidth as possible.These recorded _*

signals are clipped and sampled so that the information is preserved in distal |

format. Corrections to compensate for the clipping and sampling are applied Iduring preprocessing. Pairs of tapes, one from each station, are crosscorrelated i
afterwards in a pr_processing program. The correlations are repeated for many
trf.._l combinations of relative delay offset and delay-rate offset between the two

records. When both digital records are correctly aligned, all of the frequencies
within the signal bandwidth will have the same phase, and at this point the super- _"

position of all the harmonic components within the complex correlation function

v._ll produce a maximum lnits amplitude, as well as in the amplitude of its power
spectrum. For each observation, the delay and delay-rate values that rroduce

this maximum are recorded, and the series of such values form the observables ,
that enter as input into the GTDS progr_n.

: A. 6 RADAR ALTIMETER

A satelliteis assumed tobe ina near earthorbit,and itsattitudeis assumed j
/s

: to be stabilized so that the axis z I of an attached pointing instrument is directed ._
,_ alon_ the local vertical or gravity gradient. This may be accomplished (ss for

J GEOS-C) by gravitygradientstabilizationor otherattitudestabilizationtechniques.
Such stabillzatiovallowsthe use of a directionalantenna,pointedalongthezI-
axis,forthe radar altimeter.The transmitteraboardthe satellitetransmits

X-band signalpulseswhich form a seriesofsphericalwavefrontsdirected
towardsthe earth. The antennabeamwldth resultsin a signalcone with_tsapexat

thetransmitterand an axiswhich coincidesapproximatelywiththez_-axisof
the satellite _s shown in Figure A-7. As the wavefront of each pulse intersects
the sea surface, it is reflected back towards the satellite. The tilde difference
between the time of transmission and time of reception of the radsr pulse Is a _ "

_.. measure of the height of the satellite above the local surface. If the beam- ;
width of the transmitted signal is larger than the nomtnal spacecraft libration in

_ attitude about the local vertical, the first return signal will lie on the transmission ' ,
path normal to the sea surface and through the satellite° The effective size of the

r tllumlnatecl spot on the surfac.e is determined by the transmitted pulsewidth, the _ '
beamwidth, and the type o_ return pulse detection utilized. As long as the local
vertical from the surface to tb_ satellite lies tn_ide the antenna beamwidth cone,

i the altimeter measurement will represent the shortest distance between the /
satelliteand the sea surface. _ .

4
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Figure A-7. Radar Altimeter Cone
J

f_
: , The satellite timing equipment p_ovides signals for measuring the time interval

; between the transmitted and received signals, and _or time tagging discrete

"4 observations. This timing equipment is periodically cahbrated from ground s
r

stations. <1"

Initial preprocessiag of the altimetry data wi91.consist of applying calibration
and ambiguity corrections to the t_vo-way time difference between transmitted

and received signals, and convel_ing the result to an altitude by multiplying by

one-half the speed of light. The time tag is calibrated and corrected to the

midtnterval time (i.e., the time that the signal is reflected from the sea surface}.
After these preprocessing computations, each data element is treated as if it
were an instantaneous measurement at the midinterval time.

i

_- A.7 SATELLITE-TO-SATELLITE TRACKING

A relay satellite is assumed to be in a near synchronous orbit over a tracking

site, and a target satellite is assumed to be in a low elliptical orbit. Figure A-Sa

presents a schematic of the geometry of the two satellites relative to the tracking

site. The tracking station transmits a signai to the relay satellite. The relay

satellite then retransmits the signal to the target satellite, which retransmits

it back to the relay satellite. Finally, the relay satellite retransmits the signal

to the ground station. The signal traverses the path S -- A _ 1'_ _ A _ S. The

return signal, when related to the transmitted signal, can be expressed as the

sum of the range segments of the signal path {RS) and the bime derLvative of the

range sum (RSR).

I
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k An exaggerated schematic of the signal paths is shown in Figure A-8b. The
'_ station transmit_ a signal at time t 0. The signal is received by the relay

} satellite at t 1 and retransmitted to the target satellite at t_ +/_l where Ah _

__ the transponder time r_elay. The target satellite receives the signal at t 2 an-]
[ retransmi_s back to the relay satellite at t 2 + 572. The relay aateUite receives , i

the retransmitted sign_,l at ta, and "alter a transponder time delay, of A_3 , sends
- it back tothe ground station, which receives it at t 4, The station records the ,.

• data at UTC tag time t R. The signal time delays depicted in Figure A-8b are •
defined as follows: i •

c

RelaySatellite t3 tl '] :

-' A i :
iAr3

/:ti_ 2

I ,
Stat _

N ( i 'i

\_/),/_ TargetSatellite 'i

(a) (b) t _:

FigureA-8. Rang_SumGeometryendTra.smissionLegs

h "_ time delay due to the transponder on the relay _
satellite at its firsg reception

, _

Ar2 ,_ time delay due to the transponder on the target _ ,
satellite at its reception ' _

A_ ~ time delay due to the transponder on the relay
! satelliteatitssecond reception

-I=" A-31
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_ _t 1 _ light *" " ._lmospheric delay during leg 1

_: At 2 "_]',ght time delay during leg 2

_ At 3 "_light time delay during leg 3 '
J

: At 4 _ light time and atmospheric delay during leg 4. i

The recorded measurements, descr'bed in Section A.1, consist of
t

" • The gimbal angles X and Y defining the direction of the received signal
path at time t F.

• The four-way range time delay, measured as a count C of .*he number1
: of cycles of a reference frequency VR1 which occurs between the positiw,,-

directed zero crossings of the high-frequency ranging tone (frequency _h ) _,

_'i associated with the transmitted and received signals. The counter isstarted and the tag time t R is signaled simultaneously by a positive
: ] zero crossing of the transmitted signal. The counter is stopped at the

_i next zero crossing of the received signal.

• The four-way range-rate measurement ., be made in two ways. In the --t" _

"destruct" method the measurement is Co, the number of cycles of a
: reference frequency _R2 required to simultaneously count e×actly N J

: cycles of the Doppler-plus-bias signal lJ d + L' b. The count is begun at .

time t R and ended after the accumulation of N cycles of the lJd -I. Vb mgnal.
In the "non-destruct" method the measurement is N, the number of cycles

of the Doppler-plus-bias signal _d + _'b required to simultaneously count !
C0, a fixed number of cycles of the reference frequency, i.e., At for the

counting period is constant. _;

. A more detailed description of the Doppler measurement for an existing '
satellite-to-satellite tracking scheme can be found in Reference 11.

,° The data sample time t_ corresponds to the time that the range measurement , _,
of the received signal was inigigted. Therefore, the end cf the measurement

occurs at ')

, CI :"t 0= t + -At_ n (A-46) : ,_
% :i

where AtRD wccounts for ihe signal propagation delay withtD the ground station
electronics as well as dcl_ in the counter itself, and is determined by on-site "
calibration, The round t_ ', 'tght time is

A-32
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_ 7 CI Pa Pb

AtR - + _ +_ - AT - &tRD (A-47)
VRI lJh I_L

i'
_. where I

Pa' Pb "_ range ambiguitynumbers

; :: A_ --thesum ofthetranspondertime delays

The ambiguity number p_, the number of cycles of vh , is determined by range
tone methods which superimpose a series of low frequencies on vh . The ambi-

: guity number Pb ' the number of cycles of vL , is the large ambiguity which
; results from the light time being greater than 1/v L . Both At_ and p./v h are

accounted for in the logic by the station hardware. The time of the return signal

t 0 does not involve the range ambiguity numbers since their effect would be to
/ increase the return time erroneously rather than decrease the transmission
; time. The range ambiguity can be accounted for in the gross logic of the process,

since its omission accounts for large, obvious errors.
t _ pJ

I
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:: : TIME ELEMENTS :

_ The Time-t'.egularized Cowell system of equations achieves analytic stepsize _ '

control through the transformation of the independent variable time to a new il ,'
i variable s defined by i

:: i dt a :-- = r (B-l) }

} where a is called the uniformization constant and r is the magnitude of the radius
/

: vector. The physical1"imet is obtainedthroughthe integrationof Equation(B-l),
: which involves r. Any linear error in r will propagate into a nearly quadratic _:

t

error in the time. Time elements are introduced to reduce this nearly quadratic ::
error growth to a nearly linear error growth for perturbed motion. An element

J i in two-bodymotion isdefinedas a parameter which iseitherconstantor a ,linear function of the independent variable.

' For perturbedmotion (assuming small perturbations)an element v'_riesslowly _ ,,

from the two-body solution. Thus, in deriving a time element _ for the Time- ,_-/"
i" Regularized Cowell method, _ is required to vary linearly with the independent

• : I variable s, i.e., i

d_r

-- =c (E-2) :'_ ds

where c is a constant; it is also required that _- be related analytically to the
physicaltime t. This isdone viaKepler'sEquation )

1
t = to +- (E-e sinE) (B-3)

which can be rewrittenwiththeintroductionof r as

1
t = to + _- g(a----_)+--(Z-e sinE) (B-4)

II n
#

where, by definition,

-
n (B-5)

and g(a ) is a ftmction relating _ to the Kepler element a. |

, i
_ B-1

, &
le_e I ml i I ml .... I I{]ll _ m

]9760]7203-5]0



I l _ 1 1 J l ' l ..... I II ...... _ " _

1 :
! DifferentiatingEquation(B-5)withrespectto s and substitutingEquations(B-I) _ _/ :

c

and (B-2)yields i

dg_ ! _
-- -ncr -_ (B-6)dt ._

#

B.1 UNPERTURBED MOTION :_

The definitionofthefunctiong isobtainedforvariousvaluesof a by utilizing
known integralsofthetwo-body problem.

B.1.1 Time Element Correspondingtothe EccentricAnomaly (a = 1)

In Keplerianmotion,thetime derivativeof theeccentricanomaly E isgiven
by "

dE = nat-I (B-7): dt

where the mean motion n and the semimaj( ': axis a are constants for two-body ,,
motion. Comparing Equations (B-6) and (B-7) for a = 1 yields ._

g = E (B-Sa)

and '-

c =a tB-Sb_

Thus,
.3

,_. d_r_ 1 dE ra = a (B-9) '
ds n dt

and, from Equation (B-4) ,.

.to +'r e sinE _oJLv/'_-_""t

which is the desired result for two-body motion.

B-2

/
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"'I ['
L2 B.1.2 Time Element Corresponding to _he True Anomaly (a = 2)

7:
The time derivative of the true anoma',y f is given by

df
-- = _ r"2 1B-11) •
dt _;

where the semilatus rectum p is a constant of the motion for the Kepler problem.

Comparing Equation (B-6) and Equation (B-11) yields

= f (B-12a)
\

and _

c - _ (B-lZb) :
n

Thus, I :-

d__ 1 d f r2 _ _ (B-13) _//4ids n dt n

, )

which is the desired differeutial equation for _. Kepler's equation, Equation i
(B-4), can t.hen be written as

J •

-- ) f 1 - sin E)t = t0+_'---+ (E e, n n t _;
(B-Z4) , .,

1

, (f-E) e sine ' i

) B.2 PERTURBED MOTION

i The extension of the time element equation for perturbed motion is presented ,
for ,, -- 1 and a = 2, using the approach followed in References 1 and 2.

¢
f
I B.2.1 Time Element Equation Corresponding to the KS Formulation (a = 1) ' ,

Equation(B-10) can be writtenas

f

; =---.' ...... •.... ).I_ =,m====-.,-m '. _ .:-:- :==7: -:-:::::'_ .,.
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b

:': _r= t + 2h_ (B-15) ._

°_

where hK is the negative Keplerian energy

hK _ /x v 2" r 2 18-16) {

: " Differentiating Equation (B-15) with respect to the new independent variable s :

: yields

• ?

: d, _ dt _(}'_'_r) (r" r) r_".r l_] dt (B-17) i :

-i

_ ! This expression simplifies to

_-J d__ _ + r(-r'P) + r('f'r) (r-P) (B-18) .-t

""i

' where P is the perturbing acceleration, i.e., I

r = __ +P (B-19)
3 "

The differentialequation for the time element in Equation (B-18) clearxy has the

desired properties in thatthe element varies linearlywith re_'peetto the inde-

pendent variable s for unperturbed motion (P = 0),and for perturbed motion

",, (prowding P is small) the element varies slowly from the two-body solution•

' \ An alternative expression involving the total energy

h = i_ - V (B-20)

where V is the perturbing potential, can be derived by beginning with the expression

= t + _(_' r) (8-2l)
2h

Differentiating this equation with resp,_ct to the independent variable s yields

i

B-4 R]_RODUCIBILrI_#0P TIIK "q
ORIG_1ALPAGE ]B POOR
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x I

t

"I1

, d-r_ 1 _- 2rV- r(T. VV)+ r(¥'P)] -r(-f" r) !_ IB-22) ,
: ds 2h 2h2

J

where VV is the perturbing acceleration due to the perturbing potential function, i
i.e.,

• " r - _ P - VV 1B-23) ,_
; r 3

:i

Equation (B-22) can be shown to be the time element equation corresponding to
the KS formulation (Equation (5-10a)) by noting that

d d
_= 2_- (B-24)ds dE "

co = _ (B-25) j.
i' IS _

} The comparison between Equations (B-18) and the KS equatiorL, Equation (B-22), !
has been made in Referencb 2, and it was found that they give the same amount : :

[ ,. of accuracy improvement for the +_qfed._.cases.

_: B.2.2 Time Element Equation Corresponding to the DS Formulation (a = 2)

Equatim:1B-15)can be written as

(_._) _(f - E_

2hK (2N_3/_ "_
'%

Differentiating Equation (B-26) wit3 respect to the new independent variable s

yields ,,,

dT_ dt r2 r2(7.r)

: ds as +_"-_ [(r' r) + (_" r)] I_
2h_ ,_

f, (B-27) .

: _i /_r2 3_r _(f - E)

i (21%),v_ (2hz)S.'2
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This expression simr]ifles to

r 2 _ r 2
d_"_ _ _ + (T" P) + _ (_'" r) (r" P)

(B-9.8) i -

+ (f-E) (r'P) + .. _. "P- • •

, " (2hx)S/2 (2hx)3/2 t.

! Noting that the leading term In this ec_lation is a constant and all o_her terms
are a function of the perturbations, it is clear that this differential equation for

has the desired properties noted previously. °,

The differential equation {or the time element .£ in the DS formulation (see

Equations (5-45), (5-46), z.ndRFf_ercncu _) is given by _:i

%J d__ /_ +V r (2 ar r _.._ r2 _V ! ,"_ds (2L)3/2 q _/34 q _4} + q aL P4 (B-9"9) _;/ "

where L, the total energy, is one of the elements of the formulation, and s, the
independent variable, is the true anomaly. Transforming the independent
variable of Equation (B-28) to the true anomaly using the operator

d d
-- = (G - _) -- (B-S0)
ds df

",, (where G isthe _.otalang,'dar momentum and • istheperturbingenergy)and ,

\ lettingOl repre£ental_terms dependentupon ¢r_rturbations,yields ,,

d_"_ /_ + QI (B-31) '
df (2hx)3.2

If _ represents those terms in Equation (B-29) which are dependent upon per-
turbations, the followingequationresults

d_ _ # + O2 {B-32)
ds (2L)a/2

,.:

B-6
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' As in the case where a -- I, the leading term in Equation (B-31) is a s_mctlon of
_ the Keplerian energy h K , whereas the leading term in Equation (b -32) is a

function of t_'e totai energy L. This may lead to accuracy improvements for
eonsezwative perturbed motion situations, although at present no comp.'urison

stl_dies have been perfo,uned, i

I
i

% !

B..7
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; _ . APPENDIX C i i

2
• _ DEVELOPMENT OF RANGE-RATE FORMULAS

, This appendix presents the devt_lopment of formulas which relate the tracker and :,

spacecraft relative motion to the Doppler shift in an electromaguetic signal trans- . ' }

mitted from one to the other. For a further definition of the mathematical sym-// '

" Systems.b°lsused, refer to Appendix A, which describes the GRARR, ,VI'SB, USB_/S_T .

The general relativistic expression relating the frequencies of an electromagnetic ::

signal propagation from a transmitter to a receiver is

)
,t

Ur at - Fr'iir"_ (C-l)
- _

, _ _

where ,,

l 2 i= "'+._ " "" (C-2)
• a O0+ goix_ c2

i=l l,j=l

1 googil)ddx. dxJ /_" goiF- (g01g0J- S dS _ :,,
Cgo0 i,j=l i=l

and

t, r ~ subscripts indicating that the designated quantities are evaluated
at the transmitter and receiver, respectively

I)t' Pr '_* frequencies of the transmitted and received signals
.i

rt, rr _ velocities of the transmitter and receiver, defined as the derivatives '
of theirinertialpositionswithrespecttothecoordinatetime_" ._

gii elements of the metric matrix defining the nature of the space-time
frame

'" c-I REPRODUCIBILrrYOF

) ORIGINALPAGE l_
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:: ×i ~ components _,f the space coordinates /

• S _ arc length along the propagation path

_, nt, nr "_ unit vectors along the local propagation path at the transmitter and
recei_-er, respectively

l

c _ wave propagation speed

The derivatives, dx i/dS are simply the direction cosines o_.the propagation path,
and thusare _hccomponents ofthelocalunitvector_.

!_ Equation(C-1)is derivedunder theassumptionthatthemetric elements gi] v_._
slowlyintime compared withthewave propagationspeed c. This is _ good ap-

proximationsincethe variationsofthegij'sare due tovl?.n_tarymotions,which
are very slow compared withc.

i'i Inprinciple,theg ijshouldmathematicallydescribeeverythingtlmtphysicaily
.!

: 1 affects the propagation of electromagnetic waves in th_.ir region of definition,
",1 including gravitational influences, the refractive effects of the atmosphere, and

' any other significant influences. If such a rigorous mathematical descrip:ion of ,/
the space-time frame could be formulated and then solved analytically, pr,_p_.ga-

tion paths for specific cases could be computed very accurately as geodesics.

However, no such completely general treatment of the problem has yet been
produced.

It is generally assumed that the metric coefficients for the case of special

relativity are

g00 = 1

"- _i -1 (C-4)
i,j= 1,2,3

gij = 0, iCj
4

Equation (C-2) then becomes

(c-s)

e

}

C-2

\
I
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i I '
'. 2 and Equation (C-3) simplifies to /

1 _:
F =--

c (C-6) "_

/

The propagation path, which is the straight relative position vector from r t to

_r, is giv._n by

_t = _,= _ - _-r,l (c-7)

Under the preceding conditions, Equation (C-I) reduces to

= o2 (c-8)
1'r • r r

c 2 /-" ,:

which is the formula from special relativity for the one-way Doppler frequency
shift.

'i

:- _ The metric coefficients in Equation (C-4) describe straight line propagation in a
vacuum. The neglect of the ray path bending due to gravitational effects in an
acceptable approximation, considering the precision of the radar Doppler measur- i:

r ing equipment. However, ;he refractive bending of the ray by the atmosphere
(troposphere and ionosphere) is not negligible and must be taken into account. _ .,

_- The special relativistic formula given by Equation (C-8) is modified to replace ,
'-._ the unit vector _ along the idealized straight ray path with the unit vectors "

, _, = _ + Aftt ,,_:

i 1C-9) ,
nr = _ + Ant

_. along the actual curved propagation path. The method by which the refraction /
_, difference vectors An t and A_ r are estimated is discussed in Chapter 7. Here
,_ the terms will simply be introduced into the equations and formally carried
_ through the derivations. As a result of this substitution, Equation (C-8) becomes

?

f,
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b

. v, T - (C-lO)

c2 _ c _J

where nr and Wt are given by Equations (C-9).

The geometry of two-way (or three-way) signal propagation is illustrated in

Figure C-1. A continuous wave signal of frequency uT is emitted by a ground

, station at position rT at time t r. At a later time tv, the spacecraft at position
r-v receives this signal along the curved uplink transmission path. Application

of Equation (C-IO) gives the relationship between the apparent signal frequency

at the ground transmitter :'1' and at the spacecraft receiver uv , i.e.,

] _ _._.v""

Uv = _ cI . c (C-11) ., ,"

c2 L_

!

l

__,l ¥

• • sP4
"% g

, Figure C-1. Signal Propagation Geometry

w

C-4
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! where ,
UT = _" + AUT

-- i

_ uv = _" + A_ v _ <

(C-12)

_" _v - r'T

rTt
and the subscript T reier8 to quantities evaluated at the ground transmltter.

Although it is not rigorously correct to do so, the spacecraft USB transponder

can be modeled as though it coherently turns the received signal around and

:// retransmits it at the received frequency vv.* The downlink signal is received
by the ground station (either the same station which _ransmitted the uplink signal

or an entirely different station whose oscillator is coherently linked with the

transmitter) at position _k at tirae tR. The one-way frequency shift which occurc
on the curved down/ink path is

] - __ ._./'/"

VR c2 c. (¢-13)
_, Vv rR "rR

1
c2

where dv = _" + Adv

(C-14)

?R - ?v
: d -

I_R-_',,t

The relationshipbetween the transmitted and received ground frequencies for

thistwo- or three-way case is computed by multiplying Equations (C-11) and

(C-13) together to ubtai_

*TheUSBuplinkfrequencycapabilityis2025to2120MHz,andthedownlinkfrequencycapabilityIs2200to
23n0MHz.

C-5

( ;
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I

j,+-I I JVg _ c2 (C-15)

_T'-T- I+--_'-R'?R_ iJ_ d'_r'lc2 ,=

: !

: - The frequencies vR and vT are defined with respect to the tracking station oscil- i
lator. In the language of relativitytheory, this "clock" measures the proper i

time associated with the inertiallymoving tracking station. The velocities,on I

the other hand, are alldefined in terms of derivativeswith respect to coordinate

time, the time system associated with the inertial reference frame. This time i _

can be regarded as the same as mtiform time for the present development. I

IfEquations (C-12) and (C-14) are substitutedinto Equation (C-15), and the i

/._ il factors within the brackets are expanded in terms of no higher order than 1
:' l AT. (r/c)or Ad" (r/c),the followingform results !

rT • rT _ -_

UR _ c2 c + -- (C-16)

_T rR'_R u"#'Tl L dcrv ; cl �d�Jc 2 c

where ?

rT " . _ Ad R :.. A_ : A_T ' + Adv" Fv - AUv "rv "_R

The first term within the braces (the product of the expressio;:s in brackets) "'

represents the vacuum portion of the Doppler shift. The additional term A_/c, .}
involving the propagation path unit vector deflections, represent_ the refraction

effects. Equation (C-16) relates the received frequency to the transmitted fre-
quency via the geometry of the round-trip lightpath.

The continuouslytransmitted signalis beat against the received signal,resulting

in a signalwith a frequency equal to the differencebetween the two, i c., i

Pd : PR-PT : PT -I (C-17)
}

,!
,_.

C-6

l
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r: _..) A fixed frequency bias signal vb is added to this Doppler signal and the combina-
: tion is fed to a Doppler-plus-bias cycle counter. Simultaneously, a reference

frequency Va2 is fed to a separate time interval counter. At most tracking stations,
the bias ahd reference frequencies are coherently derived from the same source

as PT" The measurement is mechanized in one of two ways, a destruc t. or a non-
destruct count. The destruct count mode (employed in the GRARR and ATSR sys-

_ terns) counts a preassigned fixed number of cycles N of the Doppler-plus-bias

signal and records the measurement as the (variabLe) number COof cycles of the
_ reference frequency required to accumulate the simultaneous N cycle count. The

" nondestruct mode (employed in the USB and ATSR SST systems) continually ac-
cumulates the count of the Doppler-plus-bias signal in its counter. The measure-
ment consists of recording this continually increasing number whenever a pre-

- assigned fixed number of reference frequency cycles has been accu_ ulated.
Differences between the recorded values at different sample times g_ves the

: number N of the Doppler-plus-bias count over the reference time interval. Using
either technique, the measurement results in a count of some number N of Doppler-

, plus-bias cycles over a period of time
?
, CO

AtRR = --- (C-18) /
.',_ PR2 .:i/

This measurement countcan be modeled mathematicallyby the equation
i

t+AtRR_ (C-19)
N = I (vd+ vb)dtR

"t
:

Ifthemeasurement is made in thedestructmode, theintegrationtinleinterval

AtgRshould be varieduntilthecomputed valueof N matches thefixedcyclecount
number exactly.Inthenondestructmode, AtRR isfixedand N, ingeneral,will

,\ be some whole number of cycles plus a fractional part. This fractional part
should be truncated to simulate more rigorously the actual accumulation of whole
cycles.

The integration variable t Rin Equation (C-19) is the receiving station clock time,
or proper time. The significance of this point will become evident during the
evaluation of the integral.

Substitution of Equation (C-17) into Equation (C-19) yields

I
, _" C-7
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= i

L

;' } t+AtRR l

; i N = + vb - v dtR
" I r

! , (c-20)

; i _ t+AtRRvR i '
I = (V'b - VT) AtRR + VT _ dtR
_ vT

t

_. and Equation(C-16)can be substitutedforthe remainingintegrand

/Ji iT"tr :

• 1+
c2 _

N= (%-v T)AtRR+ vr iR'_S

2' ,2 (C-21)
)

, t+AtRR

: ----- -i-- A* i + t
: C C2 -'-'"

X _'rT ?.r dtR + VTAtRR

,¢ o j - c2

In writing Equation (C-21), it is assumed that the squares of the inertial speeds

r T • i_ and FR . i"R are constant, since the motion of the tracking sta_.ons is due
to the near!y uniform rotation of the earth. The refraction integral is evaluated
by the trapezoidal rule, yielding

APt+AtRR + _0t _
• A_ = (,2-22)

The remaining integral in Equation (C-21) will now be considered. The geom-
etries of the uplink and downlink ranges are related to the light times by

p. = IL-_TI = c(?,-T r) (C-23)

: and "
t

Pd = [YR-rvl = c(_*a-_v) (C-24) :

:' The derivatives of these ranges with respect to the coordinate time _" at the
receiver are given by

]

C-8

"t' RF2RODUCIBILITY OF THI_
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Explicit solution for the coordinate time derivatives gives

rR

dL l - d" --c 1 dPd

d_. "-= l dr. /rv C ,.
l-i'--

_ c

. L (C-27)
rV

dT.T l-_.-- , T

I-6.--
c

Equations (C-27) show that a coordinate time increment of a given length at the i

receiving station corresponds to increments of different lengths at the space-
-- craft and at the transmitter, considering that the arrival of corresponding phases

at _T and '_T + O_r marks the interval.

Substitution of Equations (C-27', into the integrand in Equation (C-21) yields the
1

expression for the integral term

i T • r T tR+AtR R

'+-7- , .' dOu,,q
_T -_. _ 1 --- dr, (C-28)

rR.rR C \dr R
+

. c 2

4
_', ,:

_" C-5
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: At the receiving station, the relationship between coordinate and proper time is - ;
J

't'

dtR = _'R"rR aTR (c-29)

i
{

? .

Therefore, .
• t

) ; rR'rR do - do (C-30) '

' _i d_ dtR ' i
J

.,} and, since itwas assumed that rR' rR " constant,Equation (C-2=) becomes

; i PT VT . ,4,_ N = PbAtRR ----APCc + _/AtRRAP_vgc (C-31) _ /Ji
1

Terms higher thaa firstorder in Irl/c have been neglected,and the computed I _
quantity

f

APc = (Pu + Pd )tR+AtRR - (Ou + Pd )tR (C-32) _ :

t

is the range ,-Ufference.Since the quRntitlesN, A tRR, Pb' and vTare known, the !

preprocessor program can compute the "obser,,ation" I

" P0 2V T b- AtRR (C-33) _ :

, %,

and Equation (C-31) can be written as

Ap,: A_avg

- Po + _ (C-.54)
2AtR R 2 ]'

r

where the division by 2 ,'_tRR causes the range difference to approximate the
one-way range rate. Equation (C-34) mathematica!lv describes the modeling of

the USB Doppl,_r measur_ment in GTDS. The quantity on the left side of the

equation is the computed measurement and is calculated by means of Equations

C-10
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_ (C-32), (C-23), and (C-24). The latter two equations require that two iterat!ve

light-time solutions be determined to correspond to the round-trip propagation
paths terminating at the receiving station at the start and at the end of the Doppler- !

ulus-bias count interval A tgg. Tbe first term on the right side of Equation (C-34) t ";

represents the actual observation and is calculated in the preprocessor from the _
basic measurement data according to Equation (C-33). The second term on the _ s
right in Equation (C-34) is the refraction correction term. It is computed by
Equations (C-22) and (C-16), where the appropriate A_ and Ad path deflection
vectors are computed as described in Section 7.6.3.3. _

The GRARR and sidetone ATSR Doppler observations are implemented in GTDS
in the form of a very simple model. The Doppler measurements made with the
GRARR and ATSR systems differ from those made using the USB system in x,

terms of the bardware details. The GRARR VHF system operates with a nominal
uplink carrier frequency of 148.98 MHz and a nominal downlink frequency of
136.89 MHz. The ATSR system, operating in the sidetone Doppler mode, uses _,

C-Band trequencies of approximately 6000 and 4000 MHz on the uplink and d,_wn- _
link legs, respectively•

The simple model for these data types Is derived by further restricting the / :
assumptions made in deriving Equation (C-15). As given, that expression for the -Y
two-way Doppler-shifted frequency ratio is valid under the assumptions that

! I spvctal relativity holds and that the origin of the inertial coordinate fra_r e is at
the center of the earth. If it is assumed instead that the tracking qtatton moves

! with uniform velocity, i.,_.,

; rR = rT = constant (inertially)
$

then the origin of the coordinate system can be considered to be fixed at the track-

ing station aud moving with it. Then\
rR = rT = 0 ,i_

and Equation (C-15) becomes

U v • r v _.,

VR c • "

C ?

C-11
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Substituting Equations (C12) and (C14) into this expression expanding eiimi
< nating higher order terms and noting that in thi_ case _ = d f

T
t

U • r v

vR c Ab (C35) ,

, 0T u * rv c _,

, C

"t
where _

%,

Since the tracking station is motionless in this coordinate frame, the unit vector
,-" _ can be defined in terms of the instantaneous position _ector of the vehicle rela ,,

t tive to the station

rvt.t¢)

u- (r)l (c3)
a*

at the vehicle turnaround time t v The instantaneous relative range at this time

p = (c-a7)
)-

and the rate of change w_th respect to coordinate time is i ;

i _ = u" _v (C-38) _i ,
?

• , If Equation (C 38) is substituted into Equation (C-35) and the result then substituted _ -_

,,_. into Equation (C20) ,
t+AtRR ."

N - PbAtRR = "T F___ I-2 dt R "_

' (C-39) '

• = -2 + _, dtg 1

: C-12
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_=)' Applying the Theorem the Mean gives t

J " i

"_,: N PbAtRR 2UT av R 2PT c /avg i

"tin last te'__n on the right is the refraction correction, and it will be assumed
that the mean value can be approximated with stJficient accuracy by evaluai;ing

_ " A_v and rv at the vehicle turnaround time _"* corresponding to tile counting inter-
val midpoint. W_th this understanding, the subscript "avg" will be dropped from

:_ this term. Writing Pavgfor the value of the range rate which produces the correct

; average value in Equation (C-40), and solving explicitly for _g gives

'; "" A_v " rv
¢ b

;' AtRR.| ¢
: = (C-41)

i" _ , rv

: N 2UT
"_ ! 2PT " b AtRE c #

,%. ,_../

this ex-presston in terms of the sin:all parameter A_ v • r v andEximnding eliminatingA

_- , _ _ higherorder terms in thisparameter,and terms involvingt.hisparameter _vidvd
by c,yieldsB

c ub AtRR _

• Ptvs "_ - A_v , _" (C-42}

' 2VT - Ub A_R R / 4

• 't

_" _ It is again assumed that the correct average value for Pa , the tnstantansous
_' relativerange rate,isgivenby Equation(C-38)evaluate_att *,thevehicle

turnaroundtlme correspondingto' . couh,int,.rvalmidpointat theground
station.Equation(C-42}thereforerepresentsthemodel of theGRARR and

_.,_ sidetone ATSFt Doppler measurements in the form of an instantaneous relative

_.,, range rate. the term on the left is the computed value obtained by evaluating /
:. F_luation (C-38) for the cttrrent estimate of the spacecraft ephemeris. The a

first term on the right L_ldeof Equation (C-42)
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N

,• c b _ R (C-43)

2p T - v b AtRR ,.,

is the algorithm in current use in the preprocessing of the GRARR and ATSR
Doppler dab (References 1 through 4 in Appendix A) and repre'_ents the given
observa+.ion. The second term on the right side of Equation (C- .2), A_'v._ v ,

j * definedis the refraction correction. The vehicle velocity is taken _t _he time t v
"_ above, and A_,, is ew luated as described in Section 7. :,,,.o.

\ A development similar to the one presented in this ._9pendix is carried out in
Reference 2 of Chapter 7 for the four-way Doppler measurements used in the
ATSR Satellite-to-Satellite (SST) Tracking System (see Section 7.3). The re-

j
:: suiting range difference for the Doppler count is

A B
VR2 VR2

N = PbAtRR APL - _ APs (C-44)c c t

where _ _"
[

• , b'R2 '_ system reference frequency

_ _b _ bias frequency

A, B,C ~ constants which depend on the tracking mode counting method
and the frequency option used

APL, APS "" changes in the four-leg and two-leg round trip ranges, re- _
•_ _ spectively, during the count interval AtRr_.

!

/
a

REPRODUCIBILIIYOP THE
? i ORIGENAL PAGE IS POOR
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APPENDIX D

OBSERVATION WEIGHTING

Tables D-1 and D-Z define typical dynamic weighting factors and a priori standard
I

deviation_ for s,o.veral observ_ion types that are processed in GTDS. The dynamic
weighting factors are used in the following manner: If 02 is the a priori variance

for a given observation type and PF iS the dynamic weighting factor, then the data
weight for an observation is formed as

'_" W = OF/ 02 (D-l)

or, for those observation_ where a dynamic weighting factor is not specified,

w = 1/o2 (D-2)

Table D-1 ' /

_" Dynamic Weighting Factors l .,"

1-._- ObservationType Dynamic Weigh'.ingFactor*

Minitrackdirectioncosine

_' _ Minitrack direction cosine m V/1 - m2

Range Cl sin (Elevation) + C2

Range Rate Cl sin (Elevation) + C2

' Elevation Cl sin (Elevation) + C2

: Aztmuth C3 cos (Elevation) + C4

*Cl , C2 , C3 , and C4 are _r-supplied constants.

' e

e !

5 (

" ill D-1 i

"I
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Table D-2 I

Typical A Priori Data Standard Deviations

Observation Type A Priori Standard Deviation

Range (VHF) 500 meters

Range Rate (VHF) 30 centimeters/second '

X30Orientation angle (VHF) 3600 seconds of arc

Y30Orientation angle (VHI_ 3600 secoads of arc

Minitrack direction cosine _ 0.3 m_ls •

Minitrack direction cosine m 0.3 mils

Range (S-Band) 100 meters

Range Rate (S-Band) 10 centimeters/second

-J Azimuth (C-Band) 54 seconds of arc

Elevation (C-Band) 54 seconds of src

_ Range (USB) 15 meters ./.i

Range Rate (USB) 5 centimeters/second

X30 (USB) 720 seconds of arc I

Y30 (USB) 720 seconds of arc

Xs5 (USB) 54 seconds of arc

Yss (USB) 54 seconds of arc

, D-2

/
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APPENDIX E

MATRIX IDENTITIES ASSOCIATED i "

WITH SEQUENTIAL ESTIMATION _.

- _ This appendix presents the derivations of a recursive form of the covariance

; _ matrix of error and an alternative form of the optimal linear gain. The resu]ts
i of these derivations are used in Section 8.4.1 to simplify the expressions for the

i covariance matrix of error and the updated state correction vector.

'_: The following symbols are used in the derivations

,i P -_ a symmetric, positive definite matrix

( I I _the identity matrix

! _ the weight of the (re+l) "t measurement; its inverse is equal to the
"_i Wm+l variance of the measurement noise ,,

F _ the matrix of partial derivatives (see Equation (8-6)) ">/

!
E. I DERIVATION OF THE RECURSIVE FO_PdVlOF THE COVARIANCE

MATRIX OF ERROR, PAxm+l
i

From Equation (8-80b) the covariance matrix of error is given as

PAxm+, : PAx + Z_P (E-l)

• In order to find an expression for AP, Equation (E-l) is substituted into

P;* P^ = I (E-2) :
_xm+ 1 _Xm+ 1 _ ,,

yielding

p:l (p. + Ap) = I (E-3)
_Xm+ 1 _x m !

; Inverting Equation (8-79), the following expression is obtained
i '
_ ,

p-*&x_+l: (p_l,,+F_+,,,,+iF+,) (E-4) _° !
Substituting Equation (E-4) into Equation (E-3) gives

p-I AP* T
Axm F_+lWm.lFm+lVAxm+ Pmr+lWm+lFm+lAP=0 (E-5) t

j _'lmil

"_" E-1 I
REPRODUCIBILfI_ OF T_]_
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PremultJplyingEquation(E-5)by PAxm yields ] •

Ap + paxmFmT+lwm+IFm+IPAxm+ PAx F_+lW +xF+IAF = 0 (E-6)

Solving this expression for AP yields

XmF (E-7)! AP=- (I + PAx FT w + F 1)-IPA _+lWm+IF°+lPAxmm m+l _" I m+

Premultiplyingby PAxmp-IAx

AP : - PAx (I F_+lw_+IF_+l)-IF°X+'w°+IFm+IPAx (E-8)
_: m m m

' MultiplyiugFT_+Iw_+1Fm �|theterm inparenthesesin Equation(E-8_.and
factoringforward y£elds

' Ap = - PAx FZm+lW_+1F_+x(I+ PAx F_X+IWm+'F+I)-IPAx° (E-9)
', m Ir_

' Equation (E-9) is not the best fcrm for AP. From the definition of the inverse

I of a matrix, the expression #,

FT _-1(w_+lI +F+.p^ FT+I)= I (E-10) /(w:+11+F+_PAxo_+_" _,_,_o -_" .

can be obtained.

, PostmultiplyingEquation(E-10)by Win+ IFro.1 and thenfactoringout Fro+1 <
yields

- FT _-i (E-11)('m+'l+Fo+_PAxo+I" F_+I(_+PaxFT+xw_+_Fro+l)= Wm+lF+l
- l_: 111

Fm+1Wm+1 Fm+1 ' i '_If Equation(E-f1)isthenpostmultipliedby (I + PAx° Z 71

, raFT "1 +lWm+iFm+ i)-1 .:,\ (w_1+1 �Fm+IPAxre+l) Fm+l : Wm+lFm+l(I + PAx FT (E-12)

Substituting Equation (E-12) into Equation (E-9) gives

AP : - P. FT+.(w-+1- + _ P _-T _-1 F+lpAx m (E-13) 'i/.Axm m I m J. _m+l _Xm--m+l/

and substitutingEquation(E-13)intoEquation(E-l)gives

,_ FT {w-1 F+I F z )ol F+,PAx (E-14)' ""P^ - PA_ m+l x m+l �PAxAXm+l _m m m+l m

or

PAxm+1 = (I - KFm+1) Paxm (E-15) >

E-2
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g ..
whe. 'e

i K- PA. FT F +.P^ F_+I)-I (E-16)

i E. 2 DERIVATION OF AN ALTERNATIVE FORM OF THE OPTIMAL LINEAR GAIN

From Equation (8-79), the covariance matrix of error is given as

! PAxm+l= (p;l + FretlWm+lFm+l)-I (E-17) :

PostmuILiplyingthisequationby FmT+IWin+1 and factoringout p-1 givesAx
m

i

" Xm+lF -- m I A _'PA _+xW +, (I + PA_.FmT+Iw_+'F_+')-I PAxmFT+'w_+" (E-18) ,,

PremultiplyingEquation(E-18)by F Tm+l Wm+l Fm+l and substitutingEquation

; (E-I_) into the result yields

• m• m 1PAxm+1F.,+1Win �1(E-19) /,,

Fro+l) _+IPAx FT+-w ,.=FT+ (w:+11+F+,pA x T -11 m lm z
m m

Moving the factor Fro+ 1 PAx FTm+I Wm �„�insidethe brackets and factoring out w.+ 1 ,

FmT+lWm+,Fro+1PAx FmT+lWm+1 (E-20) :
m

F T i] -I I= Fro+1) +m+l Win+i[W_ll (Fro+ipAx T -I

p T ,Factaringout Fro+I A_ Fm+1 from thisexpressionand premultiplyingby
T ",, "1 . m _

(F._+lw_,u_+1) p.ves

Fm+l m+lP^ F'f+w +. = PAx T (w:lI + Fm+IPAx FT )-I (E-P-I) :LlXm+l m _t m I m m

Finslly,substitutingEquation(E-21)intoEquation(E-16)yieldsthe following

expression for K.

Fr+.w ¬�(E-29.)
K = P^L1Xm+lm /. m I

' " '_ E-3

,:
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_: GLOSSARY OF MATHEMATICAL SYMBOLS

.i

_ A - Azimuth angle.

7
_' - Reference satellite area for aerodynamic drag in Section4

: 4.5.

- Satellite area exposed to direct solar radiation in Sec-
; _ tions 4.6 and 5.4.

- Precession transformation matrix from mean of i950.0
to mean of date coordinates. See Sections 3.3.1 and 9.1.1.

i1 A - External acceleration vector in Section 4.9.

l A, B, C - Matrices of time-varying coefficients in variational dif- /
_! ferential equations in Sections 4.1, 6.4, and 6.5. ...

i - Coefficients used in the SST Doppler count in Section. 7.3.3.

A, B, C, D - Coefficients of polynomial fitted to Minitrack fine base-
line rectified data in Appendix A.

A, B, C - Coefficients of polynomial fitted to Minitrack coarse and

medium baseline rectified ambiguity data in Appendix A.
b

A - Solar paddle area in Section 4.5.2.
". p

A.1 - Atomic time.

# I

A l , A2, A 1 , .., A25 - Auxiliary parameters defined in Equations (5-184).

a - Semimajor axis of satellite orbit.

- Semimajor axis of reference ellipsoid in Section 7.4.

- Magnitude of spacecraft thrust acceleration in Section 4.8.

- Minitrack fine baseline fractional phase rate in Appendix A.

" _ G-I
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I
ab - Inertial acceleration vector in body-fixed coordinates.

= See Section 4.3.

Ez(M) - Inertial acceleration of the point mass earth due to the
moon's oblateness. See Cection 4.4.

i

aF' aF' _ - Minitrack fine baseline fractional phase difference in
Appendix A.

: aij - Polynomial coefficients of polar motion in Section 3.3.2.2
(see Table 3-1).

- Time difference polynomial coefficients in Section 3.5.2.

- Term s used in the evaluation of the Chebyshev polynomial
coefficients (b i) in Section 3.6.

.J

;_ a,, b_i , ci - Shank's coefficients used in the Runge-Kutta integration
method in Section 6.6.

J
d%. /'

: _ - kepresents the j th row of the matrix of measurementJ
partial derivatives, F, in Chapter 8.

_ - Acceleration vector in the nominal dynamic tl model.
See Section 8.4.2.

a - Planet rad'us in Section 4.6.1.p

a_ - Vector of unknown or unmode_ed accelerations in Section
8.4.2. ,,

a, ay, a - Coefficients of the polynomia: -" :_-acterizing the attitude
control system acceleration in Section 4.7.1.

a0, a 1"' • ' a4 - Coefficients of the polynomial characterizing the space-
craft thrust acceleration in Section 4.8.

al, a2, a 3 - Parameters in the topside electron density profile in /
Section 7.6.

B - Transformation matrix from true equator and equinox _f

date coordinate system to body-fixed coordinates in Sec- i
tions 3.3.2.3, 4.3, 9.1, and 9.2.

G-2
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_ B - Bias correction vector in Section 4.9. _

B, C, A - See A, B, C above.

Be, BF, BM - Minitrack coarse, fine, and medium phase rates in ; t
Appendix A. i

_ - B 1 - Transformation matrix from true of date to pseudo body-

.; fixed coordinates in Section 3.3.2. _

B 2 - Simplified transformation matrix from pseudo body-fixed
to body-fixed coordinates in Section 3.3.2.

: BI,..., B is - Auxiliary parameters defined in Equation 15-185).

,/ b - Measurement bias in Sections 7.1 and 8.2.

_ bF - Absolute phase difference for the Minitrack fine baselipe
_ in Appendix A. t

b, - Chebyshev coefficients of interpolating polynomial in

{ Section 3.6.

_' ; bj, cj - Numerical coefficients in S_-etion 5.6.

b m - Polynomial fitted to Minitrack fine baseline rectified data
in Appendix A.

_ b° - Polynomial fitted t_ Minitrack coarse and medium base- ,
line rectified ambiguity data in Appendix A.

b_, by, b, - Coefficients of the linear term of the polynomial charac-
terizing the attitude control system acceleration in Sec-
tion 4.7.1.

C - Transformation matrix from mean equator and equinox
of 1950.0 to true of date coordinate system in Section

_ 3.3.1.3 and Chapters 4 and 9.

C, A, B - See A, B, C above.

n

CAc - Force coefficient for the force along the cylinder axis in
,, Section 4.5.2 (see Table 4-1).

!
" G-3
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t

Cn , CD_ - Aerodynamic drag coefficient with and without systematic
- error corrections in Section 4.5.

CF - Nondimensional force coefficient in Section 4.5.2.

,: CNc - Force coefficient for the force normal to the cylinder s
axis in Section 4.5.2 (see Table 4-1).

! •

C - Force coefficient for the force normal to the plate in
Np Section 4.5.2 (see Table 4-1).

_ C R - Nondimensional force coefficient for solar radiation
pressure in Section 4.6.

C - Force coefficient for the force tangent to the plate in
Tp

_/ Section 4.5.2 (see Table 4-1).

C _ - Harmonic coefficients of the earth's nonspherical poten-
J

_ tial in Section 4.4.
s 4

" m

C n - Gravitational harmonic coefficients. ,

CA_A, - Correlation between errors in -s and _* in Chapter 8. I

i

C5_ - Currelation between errors in _ and z0 in Chapter 8.

CA_0, - Correlation between errors in _o and _ in Chapter 8.

CA_oA_ - Correlation between errors in Xo and Eo in Chapter 8.

. CA__ - Correlation between errors in _ and _ in Chapter 8.

C_ - Dot product in Chapter 9.

Co, C, - Count of the number of cycles of the GRARR and ATSR
Doppler. reference frequency and the range reference
frequency in Chapter 7, and Appendices A _nd C.

c - Vacuum speed of light.

c, cp - The group speed and phase speed of propagation of an
electromagnetic signal in Section 7.6.

G-4 "_"
REPRODUCIBILITY OF Tl:lll
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I ii _ Harmonic coefficients of the moon's nonsphcrical poten- :Ci

tial in Section 4.4. 1 "_;o

cj - Coefficients in the expression for Y_lt) in Section 3.6. 1

c, c, c - Coefficients of the quadratic term of the polynomial char- '
acterizing the attitude control system acceleration in
Section 4.7.1.

D - Transfol_mation matrix from true of date to local plane
coordinates. See Section 3.3.4.

t i.
- Parameter obtained from BarkerVs equation for parabolic

_ motion in Section 3.3.8.1. i

i - Parameter used to determine if the spacecraft is within _i

the cylindrical shadow of a celestial body in Section 4.8.

- Linear differentiation operator in Sections 6.1 and 6.4. j
/#P

,_ D, D - Matrix and its elements in Section 5.5.
sj

. J D, - Quantity used to snlve KeplerVs equation for elliptical
: motion in Section 3.3.8.

! d - Spacecraft diameter in Section 4.5.2. '

d - Unit vectorpointingdown a_ungthevacuum downlinkpath _ :_

from the spacecraft to the tracking station in Section 7.6.3 ,
_ and Appendix C _ "_

_ ,

_ d -Numbcr ofephemeris days past Oh January I, 1950 ET in _

_ Section 3.3.3. ,_

E - Eccentric anomaly of an orbit. '_

i '- Transformationmatrix from body-centeredtrue ofdate

_ inertialCartes_.ancoordinatestoorbitplanecoordinates ,
{_ in Section 3.3.5. ' ,:

_ - Elevation angle ,neasured from the reference plane to t_.
_ station-to-spacecraft position vector in Section 3.2.4,

!! Chapter 7,Section9.1,and Appendix A. i
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"' E (cont'd) - Matrix of partial derivatives of the nonlinear measure-
: ment equations f(x_) with respect to consider variables
._. z in Section8.2. ::

_; - E - Observed elevation angle in Section 7.6.
'4 "

E• - Linear shitting operator in Section 6.1.

= ET - Ephemeris time. :

e - Orbital eccentricity, i _

- Eccevtricity of the planet's fibre in 3ection 3.3.6. i

_ _ - Eccentricity vector in Sections 3.2.6 and 3.3.10.
!

? c., ey, e_ - Herrick eccentlicity vector components used in Section i
:_ ; 3.3.11.2. _ o

r - em - Exponential multiplier in Section 7.6.3.

F - H3_perbolic anomaly in Section 3.3.8. [ :1 -.

- Er_entric longitude in Section _.3.9. Equals the sum of

the eccentric anomaly, argument of perigee, and right
ascension of the asceading node. ,_ !.

t

- Total force acting on the spacecraft in Chapter 4.

- Perturbed Hamiltonian in Section 5.5. _ _

: - Matrix of partial derivatives of observations with respect
to solve-for variables in Chapter 8 and Append.ix E.

F' - Augmented matrix of partial derivatives in Section 8.2.

FB - Aerodynamic acceleration per unit density in Section 4.5.2.

FTwF - Normal matrix inChapter 8.

_ WF - Expanded state normal matrix in Chapter _.

Ft, F, - Parameters used in general relativistic expression
(defined in Appendix C).

!

G-.6 *l"
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F0 - Unperturbed gamiltonian in Section 5.5. _ _

F 1 , F 2 , F 3 , F 4 - Functions ustd in the evaluation of the density in Section i_ :
4.5.4. ! :_

Fs0.7 - Daily a_erage of the 10.7 cm solar flux in Section 4.5. i _"

F-'10.7 - The 81-day running average of F10.7 . See Section 4.5.

- Augmented observation matrix in Section 8.4. _

f - Planetts flattening coefficient in Sections 3.3.6.1, 4.5.G,
7.2, and 9.1.

:_ - Orbital true anomaly in Sections 3.3.8.1, 4.10, 5.9, 6.1.2, :

and AFpend_x B.

- Ceneral time-varying function in ChaI_te_ 6.

f, g -. Se,'ies used to predict spacecraft positions in Chapter 9.
,2J

: f, _, _ - Equinoctial unit vectors along the equin(ctlal coordinate r

_ .J-_ directions Xep, Yep' and z ,p, respect_¢ely, in Sections .i
3.2.5 and 3.3.9.1.

_ flti) - Observ_ttion model in Section 4.10.

I fi - Functions used ih the Runge-Kutta integration method in .Section 6.6.

_' f_ - Nonlinear measurement functiona in Sections 7.1 and 8.2. , "

fo F2 - Critical frequency of the F2 layer in Section 7.6. -!

G - Universal gravitational constant. ,:

- Total angular momentum in Section 5.5 and Appendix B.

GHA - Greenwich Hour Angle. " _
e

- ¥,
g - Argument of the pericenter in vection 5.5,

: i g' g' - Mean anomaly of the moon and sun, respect.rely, in Sec- _
tton 3.3,3.

} i,
L
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¢

;: g(a) - Function relating _- and a in the time element formula- ]
tion in Appendix B. ..

gi - Nonlinear functicaal form of/_'_i in Section 8.2.3.
,/

g ij - Elements of the metric matrix defining the nature of the , :
space-time frame in Appendix C. ,

L

g_ - Sea-level acceleratioP due to gravity in _ection 4.5.4.

H - Local hour angle of the sun ill Section 4.5.4.

: - The z component of the angu}ar momentum in Section 5.5.

, - Matrix used for expressing the Cowell _orrector formula
: in matrix form in Chapter 6.

\

; HI - Ionor.I_heric scale height in the expression for refractivity

( in Sectio_ 7.6.

HM, H_ - Maxirnam and minimum scale heights in Section 4.5.6. -"

H, h - Travsformations of the covariance matrix P_ and the
estimated state g, respectively, in Chapter 8.

i

HT - Tropospheric scale height in the expression for r ",'ac-
tivity in Section 7.6.

: h - Altitude measured as the p_ rpendicular distance from the
surface of the ellipsoidal planet :nodel to the point being
measured. See Sections 3.2.2, 3.3.6, and Chapter 4.

%

- Longitude of the ascending node in Section 5.5.

- Energy of the orbit in Section 5.4 an" Appendix B. __

- Integration stepsize it. Chapter 6.

h, hr - Projection of the rector g on the Yep axis in Chapter 3
(equinoctial elements).

i_, ]_, h , h , h - Orbital angular rnomentu:, vectors and Cartesian com- t
X y Z

portents in Section 3.3 _. I_
L

t

G-_ "_

RF21 ODUCIB/Ty 0P

a " ' ,

]9760]7203-543



! i ! ,

:r

; h h - Apofoca' and perifocal altitude in Section 3.3.8.3.
a _ p

h K - Negative Keplerian energy in Appendix B.

• h L - Lower altitude limit for the ionosphere in Section 7.6.

h m - Altitude corresponding to maximum electron density in
Section 7.6.

h s - Height of tracking station above referer .e ellipsoid in
Sections 3.3.7, 7.6, and 9.1.

h0 , h,, h 2 - Parameters in the topside electron density profile in
Section 7.6.

•- _._ I - Orbital inclination in Section 5.5.

i'l - Linear identity operator in Section 6.1.
I

•,_ / S

- Abbreviation used in ray angular deflection formula in : -_

Section 7.6.3 (Equation (7-157)).

! - Identity matrix in Chapter 8 and Appendix E.

I

I, T - Inclination of the mean lunar equator to the ecliptic of
date in Section 3.3.3.

Ip , IIpn ; Isn, IIs - Summation symbols in Chapter 3.

i - Orbital inclination.

- Local incidence angle between an electromagnetic ray
and a radius vector in Section 7.6.

i - Incider.ce ang]_ between the spacecraft axis and thep
paddle surface in Section 4.5.2.

i s - Inclination of the moon's equatorial plane to the earth's
equatorial plume. (Euter angle used in transformation

from selenocentric to selenographic coordinates.,) See
Section 3.3.3.

J - Zonal harmonic coefficients (Jn = -CO) • See Chapter 4.

4_
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J2' J3' J4' J5 - Zonal harmonic coefficients in Chapter 5.

JD - Julian day number.

K - Diagonal matrix of accelerometer scale factor correc-
tions in Section 4.9. ,

- Kalman filter gain matrix in Chapter 8.

g - Augmented gain matrix in Section 8.4.

Kp - Geomagnetic planetary index in Section 4.5.4.

• k - Solar pressure model parameter in Section 4.6.2.

- Factor used in definition of the average Doppler fre-
.$

quench, in Section 7.3.

, k- - Unit vector normal to the orbital plane J_ Section 9.1.2. :
_X. j

:;; k, k - Projection of the vector _ on the x axis in Chapter 3 .t . "r ep

(equinoctial elements). I
?

k - Functions used in the Runge-Kutta integration method in
1

: Section 6.6.

kl, k 2 - Gain constants used to compute measurement variances
in Section 8.1.

¼ ',

: kl, k2, k 3 - Decay constants for the lower, middle, and upper third, _;
respectively, of the topside electron density profile in

\ Section 7.6. '

k 2, k 3, k 4, k s - Auxiliary parameters defined in Section 5.9. '

L - Cylinder length in Section 4.5.2.

- Luminosity of the sun in Section 4.6.

- Total energy of the orbit (DS element) in Chapter 5 and _

Appendix B. ,,

_-

- KS matrix in Section 5.4. ..

"i
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"" L (cont'd) - Ma&mitude of the angular momentum vector in Section 4.8.2.

L, I_, I__, Lr - Unit vector directed toward the spacecraft from a track-
: ing station in mean of 1950.0, body-fixed, local tangent,

or t.--ue of date coordinates, respectively. See Section 9.1.

L, - Components of the a_gular momentum vector in Section
4.8.2.

o

_,_-'TTD_./l''-fl T P_ 2 .. (LTp)_ - Transformed components of perturbing accelerations i_
_ection 5.4.

_ - _arameter in Robert's temperature profile in Section ,
4.5.4.

- Mean anomaly in Delaunay elements in Chapter a and ,

/ Appendix B. :
s

- Direction cosine of the angle between the station- : ,.
! spacecraft vector and the local tangent east-pointing _>.,,"

axis. This angle is measured by the Minitrack system
and is described in Section 7.2.3.

- Number which scales the hyperellipse of constant (normal)
probability in terms of the standard deviations. See Sec-
tion 8.5.2.

- Direction cosine of the corrected phase difference from

the east-pointing axi_ at the station in Appendix A. i

_, _, 2 _ - Herrick angular momentum vecto," and its components iny' z

_. Sections 3.2.6, 3.3.10, and 3.3.11.

M - Orbital mean anomaly.

M(_') - Mean molecular mass of at,-nosphere in Section 4.5.4. I

M, M' - Transformation matrices from selenocentric to seleno- ; /

graphic coordinates in Sections 3.3.3 and 4.4.

M, M_i, m_i - Notation used in describing the matrix inversion proce-
dure in Section 8.6.

' " G-II
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M i - Molecular mass of atmospheric constituents in Section
4.5.4.

Ml t - Transformation matrix from body-fixed coordinates,
centered at a tracking station, to local tangent coordi- ,
hates at the station. See Section 3.3.7 and Chapter 9. , :

': Ms - Sea-level mean molecular mass in Section 4.5.4.

MJD, MJD. - Modified Julian date and tabular modified Julian date.l

_ MUF(3000)F2 - Highest frequency usable for a 3000-kilometer single-hop
propagation via the F2 layer in Section 7.6.

M-factor - Ratio of MUF(3000)F2 to th_ critical frequency f0F2 in
Section 7.6.

, m - Mass of a body in Chapter 4.
:i Y

- Direction cosine of t,Se angle between the station-spacecraft /

vector and the local tangent north-pointing axis. This angle
: is measured by the Minitrack system and is described in
: Section 7.2.3.

_ - Group mean in Section 8.6.

m' - Direction cosine of the corrected phase differs, : from

the north-pointing axis at the station. See Appenciix A. ;

N - The distance along the normal vector from the intersec- , :_

,,_ tion of the normal and the ellipsoid to the z b axis. See ,
Figure 3-15 and Section 3.3.6.

- Nutation transformation matrix from mean of date to true

of date coordinates in Sections 3.3.1 and 9.1.1.

Ascending nodal vector in the equinoctial system. See _:
Figure 3-5 and Section 3.2.

N, NO - Number of cycles cf the Doppler-plus-bias sig_tl counted , ,
over the Doppler counting cycle. See Section 7.3, Appendix

! _t, and Appendix C. _ \

d .
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1 "'_'_" Ne,N m - Electrondensityand maximum electrondensityinSec-
ticn 7.6.

NF - The Minitrack fine baseline lengths in terms of vacuum
wavelengths of the nominal 136.0 MHz frequency signal. _
See Appendix A.

N_, NT - Ionospheric and tropospheric refractivity in Section 7.6.

Npq - Brouwer drag parameters in Section 4.10.

Ns - Magnitude of the normal vector to the surface of the ref-
erence ellipsoid at the tracking station in Sections 3.3.7

• _ and 9.1.

• I
_ - Surface r_fractivi .ty in Section 7.6. :

N O , i I , N 2 - Parameters in the topside electron density profile in

Section7.6. /P

; _ n - Keplerian mean motion. .=I -:?

•!,: } - Adjustable parameter exponent of the cosine variation be-
tween the Harris-Priester maximum and minimum densityf

i' _ profiles in Sections 4.3.5 and 5.3. "

- Uniformization constant in Section 5.1.

- Variable local index of refraction in Section 7.6.

- Measurement noise in Section 7.8.

: K - Unit vector along the idealized straight signal propaga-
' tion path in Appendix C.

_ - Random noise vector in Chapter 8.

_ fi, 5' - Unit vectors normal to the reference ellipsoid and the

_ geoid, respectively, in Section 7.4.

! n - Total number of residuals ior a tracking station and data
L type in Section 8.0.

- - G-1.q
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n t , n - U-_ vectors along the local signal propagation path at ]
the transmitter and receiver, respectively, in Appendix
C.

Oc , O0 - The computed and actual observations in Sections 7.1, "
7.6, and 8.2.

P - Transformation matrix from orbital rectangular coordi-
nates to true of date coordinates in Sections 3.3.8.1 and
3.3.8.2.

- Orbital period in Section 3.3.8.3.

- Ionospheric term used in the equation for atmospheric

time delay in Section 7.6.3.

- Symmetric positive definite matrix in Appendix E.

P - Perturbative accelerations additional to the primary body's
* inverse square gravity m Chapter 5 and Appendix B. / :

- Augmented error covariance matr_ in Section 8.4. :

; P^, PT - Adopted and truepole,respectively,of th_earth. See
Section 3.3.2.2.

Pi (cos 0) - Legendre functions in Section 4.2.

p m - Legendre functions in Section 4.3.1.
n

Ps - The force on a perfectly absorbing surface due to solar , :
_. radiation pressure at one astronomical unit in Section 4.6.

PT' YT - Pitch and yaw angles, respectively, defining the thrust '
directlcn in Section 4.8. ,:

P_ - Covariance matrices in Chapter 8. (

P' - Covariance matrix of the estimated state variable errors
PA, ' As _"

inChapter 8.

P%,, - Covariance matrix of the state and model parameter :errors in Section 8.2.3.

G-14 ., ,
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• P^ - Covariance matrix of estimated solve-for variable errors. _
r L.AX

- Covariance matrix of a priori solve-for variable errors i
PAx° in Chapter 8. _ "_

• l>Az - Covariance matrix of consider variable errors. ;

- Covariance matrix of a priori consider variable errors _ :

PAz° in Chapter 8.

Ip,, ZZpn _ Summation matrices in Section 6.4. i

_. 1)z ' P2 ' P3 - Components of the perturbing accelerations in Section 5.4. il

p - Semilatus rectum of orbit.

S - Dimension of tile solve-for vector in Chapter 8.

_" - Vector of dynamic parameters in the acceleration model

_' which can be estimated. ./"

i_ 1 p* - The components of _ remaining after excluding satellite : i- position and veloc;t_ variables. These components in-

clude constant model parameters pertaining to Urag, :_

: gravitational harmonic coefficients, etc. See Section 4.1. "

15, Cl - Unit vectors in the orbit plane in Section 4.10. i

p, p_ - 1)ro_ection of vector N on the Y_, axis in Sections 3.2.6,
3.3.9.1, and 3.3.11.1 (equinoctial elements). F

PM(_) - Interpolating polynomial represe_iting n_onmuonent_ o_ ;
acceleration as a function of normalized time in Section

- 5.6. ' I,

Px - Normal probability density function in Section 8.5.

Q - Transformation matrix from spacecraft vehicle-fixed
axes to true of date coordinates in Section 3.3.1_. and

Chapter 4.

- Difference between ephemeris data and the function Y,, (t)
in Section 3.6.

G-15 ,
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_" ! Q (cont'd)- Ionosphericterm used in theequationforatmospheric i

time delay in Section 7.3.3.

- Least squares loss function defineg in Sections 8.1 and :,

8.2. i:

- Covariance of the state noise in Section 8.4. _

Q' - Linearized least squares loss im_c_on in Sections 8.1
and 8.2.

,..3.8.1.q - PericentricdistanceinSection" '

- Scaling factor defining tlme transformation in Section _ :
5.5 and Appendix B.

: _J - Dimension of the consider vector in Chapter 8.
I

,= , q - The total parameter vector of all candidate solve-for /=
variables in Chapter 7. .y"

q' q, " Projection of the vector N on the xep axis in Sections
..... 5, 3.3.9.1, and 3.3.11.1 (equinoctial elements).

R - Universal gas constant. See Section 4.5.4.

- Covariance matrix ci the observation noise in Section 8.4.

R - Position vector in mean equator and equinox of 1950.0
coordinates in Chapter 3. _'

- Column vector of vehicle position coordinates in Chapter 4.

4

- Epoch stateelementsin Section7.?.3.

eX.

R - Vector from the center of an inertial coordinate system
to the satellite in Section 4.2.1. )

R - Velocity of the spacecraft in Section 4.5.2. ; ,

R' - Satellite position vector relative to the shadowing body
in Section 4.6.1. !
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tt - Total acceleration vector expressed in an inertial
Cartesian coordinate system in Section 4.1.

R^ - Sum of nonpotential accelerations expressed in an iner-
tim Cartesian coormnate system in Section 4.9. ,

R - Polar radius of the earth in Section 4.5.4.
a Jt

Rv - Acceleration due to aerodynamic forces expressed in an
inertial Cartesian coordinate system in Chapter 4.

Rp - Inertial acceleration of the ears in an inertial Cartesian _:
coordinate system. See Section 4.4. ,,

i

R , R - Equatorial and polar radii, respectively, of earth or
e p

° reference body. _:

R Io - Acceleration due to the mutual nonspherical gravitational

attraction of the earth and moon in an inertial Cartesian ,," :
:' coordinate system. See Chapter 4. - :

R_ - Geocentric inertial spacecraft position vectors in :_"
Chapter 9.

/

Rkp - Vector from the k th body to the satellite in Chapter 4.

R_ - Inertial acceleration of the moon in an inertial Cartesian
: coordinate system in Chapter 4. _

R - Equatorial radius of the moon in Section 4.4.

RNS - Gravitationnl acceleration due to nonsphericity of the
gravitational potential in inertial Cartesian coordinate
system. See Chapter 4. _,

,,

ttpM - Gravitational acceleration due to n-point masses in ,
inertial Cartesian coordinate system in Chapter 4.

R - Position vector of the sun in the ineztial mean of 1950.0
$

coordinate system in Section 4.6.1.

T{ - Tracking station position vectors in Chapter 9. i:
i ,"

" - G-17
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_ RSR - Acceleration due to solar radiation pressure expressed ] :
in an inertial Cartesiap coordinate system in Chapter 4.

, Rsu" - One astronomical unit in Section 4.6.1. -

RT - Acceleration due to thrusting of the spacecraft engines ,
; in an inertial Cartesian coordinate system in Chapter 4.

.. L

RTAC - Acceleration due to attitude control system corrections
in an inertial Cartesian coordinate system in Chapter 4.

R - Right ascension of the fictitious mean sun on the meanu

equator of date and measured from the mean equinox of
; date. See Section 3.4.3.

R - Distance from the spacecraft to the sun in Section 4.6.1.
I

' ! R, Ry, R= - Rotational transformations about the x, y, and z axes, ,
! respectively, in Section 3.3. :
t

,P

R E (M) - Inertial acceleration of the point mass earth due to an : ,_" ';'
oblate moon in Section 4.4.

.. i :_

RM(E) - Inertial acceleration of the point mass moon due to an :
oblate earth in Section 4A.

RF - Observation correction due to refraction, light time, ,
transponder delay, antenna mount errors, etc., in
Chapter 7. i ,_

RMS Actual root mean square error in Section 8.6. _ "_'-

RMSP - Predicted root mean square error in Section 8.6. _
,,_

RMSB - The smallest RMS over all prior iterations in Section 8.6. ,:

r - Radial distance from the origin to the satellite or point _,_
being measured. ',

J "

- Magnitude of the satellite position vector in inertial geo-
centric coordinates in Section 4.5.6 and Appendix B.

- G_ocentric radius in Section 7.a.

0-18 _"

" j J I

1976017203-553



"2

': | j" _ m ml
•_,-.,_,...._._'_._......I............................¢....................-.,4............. L"............ 4........... I............ 4_'_''_'_'_''_ _" ._

i -" _ r - Position vector in true of date coordinates in Sections 3.2, 2
_'_ 3.3, and 5.4.2. mr

\

- Satellite position vector in inertial geocentric coordinates ._
in Section 4.5.6. _

m

-- "- "" t

r, r, r - Positiop, velocity, and acceleration vectors in the iner-
tial Cartesian coordinate system in Chapter 5. :_

" r - Magnitude of the apofocal radius vector in Section 3.3.8.
a J

"" _b ' _b - Position vector expressed in body-fixed and pseudo body- :
: fixed coordinates, respectively.

_E - Positio: 7ector in Cartesian coordinates referred to the i--
mean equator and equinox of date in Sections 3.2.1 and

i 3.3.1.
} .y

z
x

- Position vector of the earth in selenographic coordinates _,
in Section 4.4. ,,

, r"EM- Moon's position vector in geocentric coordinat." _ in Sec- :
tion4.4. i

rlp - Positionvectorreferredtothe localplanecoordinate
system inSection3.3.4.1.

_, _,

r"it- Positionvectorreferredtothe localtangentcoordinate ::.

_: system in Sections 3.2.4 and 3.3.6. _:.:

_u - Lunar position vector in true of date coordinates in ';

Section 4.4.

_'ME - Earth'spositionvectorinselenocentriccoordinatesin ,.:
Section 4.4.

_op " Posztionvectorreferredtotheorbitplanecoordinate
system. See Sections3.2.5and 3.3.4. r,

r, - Magnitude of the perifocal radius vector in Sectio_ 3 :, ?. ' _

% - Positionvectorreferredto theorbit_-Irectangularroor _.2.
- dinate system with the Xp axis directed toward pr ,-tz_ ;,':_.

See Sectio_ 3.3.8.
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rR - Position vector of the tracking station at sign_,l reception
in inertial Cartesian coordinates. See Chapter 7.

' r',, _t - Position vectors of the generalized receiver and trans,- r

mitter in inertial Cartesian coordinates in Appendix A. I '

r - Geocentric radius of a point (tracking station) on the sur-
face of the ellipsotdal planet. See Sections 3.3.6 and 7.6.

- Radius of the earth in Section 4.5.6.

Fs - Inertial position vector of the ground station in Section
7.3.3.

_, - Earth-fixed coordinates ._f the tracking station.

i _T - Position vector of the tracking station at signal trans- i
; i mission in inertial Cartesian coordinates in Chapter 7,

. ._.j Appendix A, and Appendix C. i _"
i.y /

rT - Acceleration due to tL,_st of the spacecraft engines in
Section 4.8.1. I I'

rTAc - Acceleration due to attitude control effects in Section 4.7,

::_ - Vector in vehicle-fixed coordinates in Section 4.7.1.

- Position vector of the spacecraft in inertial Cartesian

coordinates in Chapter 7 and/_ppendix C. _

, r E (1_I)- Acceleratica of the point mass earth due to the oblate
mo_n in selenographic true of date coordinL_tes in Sec-
tion 4.4.

r_ (E) - Acceleration of the poi,lt mass moon due to the oblate
earth in geocentric true of date coordinates in Section 4.4.

_0 - Earth-centered positi vector in Section 3.3.5.

r1 - Ir.erti_,l position vector of the relay satellite in satellite-

,' _-satelltte tracking. See Section 7.3.3. 1
!
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,r r2 - Inertialpositionvectorofthetargetsatelliteinsatellite-
t_-satellite tracking,, See Section 7.3.3.

S - Mc_m solar flux at oue astronomical unit in Section 4.6.

- Orbitalperiodin r_g'alarizedtime system in Section6.i0. ,

I - Seriesi,wolvedinatmosphericsignalpr_pagationtimedelay i7/;Section 7.6.3.

- F..pocl, sensitivity lnatz_x in Section 8.2.3.

l - _,igenvector transformation from basic coordinate frame

i to t,rincipal axes in Section 8.5.
- Sum of the squares of the residuals about the mean Jn
each residualgroup inSection8.6.

- Arc length along the signal propagation path in Appendix A.
J

! Sc - The projectionofthe spacecraftpositionvectorontothe .1
_ plane normal to the sun vector in the shadow n.odel of
, I Section 4.6.

S c, S, Sp, S - Coefficients in the aerodynamic force equations in Sec-
tion 4.5.2.

S_ - SeeS_,S_,Sp,S_ above.

'; S! - Harmonic coefficientsof theeaz_h'snonsphericalpoten-
tim inSection4.4.

S m - Gravitational l_rnAonic coefficients in Section 4.3.
n

' Se - See Se,S,, Sp,S._above.

i S - SeeS c,3 ,Sp,S, above.

S,,- Greenwich Hour Angle of thefictitiousmean sun in
Section3.4.3.

_ Xs_,nZS, - Firstand second sums, respectively,in theAdams-Cowell
formulas in Chapter 6.

f
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S1 , S2 , S3 - Components of the unit vector to the sun in true of date
coordinates in Section 4.5.

ST - Station time as defined in Section 3.4.&

SV - Universal time correction due to seasonal variations in
the rotation of the e_rth in Section 3.4.6.

• s - New inaependent variable in the time-regularized eoua-

tion, of motion in Chapter 5 and Appendix B.

_, _' - The _rate vector in Chapters 7 and 8.

_ s i - Harmonic coefficie_t_ of the moon's nonspherical posen-1

• Vial in Section 4.4.

:. -_J _" - Average orbital period defined in terms of the average
value of the semimajcr axis in Section 5.8.

_< T 1 , T¢2 - Epoch times at which the attituue control accel _ration /_
: polynomials are _r,md on apd turned off in Secdon 4.7.1. - '_

Tb - Rocket motor's effective burn time in Section 4.8.1.

T - Nighttime minimum glob_,l eyospheric temperature for
zero geomagnetic activity in Section .' .5.4.

T_ - Time in Julian centuries (36525 _ulian days) measured
from 1900 January 0d 12h ET (JP 2415020.0) to specifled
date. See Section 3.3.1.'..

_ . T - Number of Julian centuries of 36525 Julian ephemeris
e

days past 0 h January I, 1950 ET. See Section 3.3.3.

Tf, TO - The effective termination and initiation times, respec-
tively, of the s:)acecraft m.otor burn in Section 4.8.1.

Ti - Specified time to which the covariance and cc. relation
matrices are prop_ gated in Chapter 8.

Tj - Chebyshev )olynomlu!s in Sections 3.6 and 5.6.

m
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i ,
: : ,, Tu - _.ime in Julian centuries (of 36525 Julian days) from ]

! "_950.0 in Section 3.3.1.1.: _

Tu - Number of Julian centuries elapsed from 12 hours UT1

: '. January 0, 1900 (JD = 2415020.0) to the UT1 time of date _
: ih Sections 3.3.2 aud 3.4.3.

T -. Inflection point temperature in Sec_on 4.5.4.

T(Z) - Atrnosl_ eric temperature profile in Section 4.5.4.

: To, T - ,_.e3[,T o above.

T I - Uncorrectedexospherictemperaturein Section4.5.4.

TI, T2, T 3 - Numerical integration error bounds "nSection6.9.

f T _ - "orrected exospheric temperature in Section 4.5.4.

i t - Coordinate time measured in seconds from epoch. The i
independent variable of the ,]uatior,.s of motion ..... " ,

} - Varirt)le defined in Section 8.? for testing residuals to
determine the confidence interval for *,he group mean.

f

- Coordinate time in Appendix C.

t • - Reference date inSection _,3.1.3.

t F - Time commencing the frame time interval for the GRARR •
and Minitracksyste._sinAppendixA. _i ._

tFM - )_idframetime forthe T,_initracksystem inAppendix A.

tf - T_me of the final observation in Section 8.4.

t* - The corrected mldframe time of the Minitrack system
5;

in Appendix A.

t - Reference time associated with the Brouwer drag param-q _e
tiersirSe ztion4.10,

t a - Time tag of the C-Band range data. •

_ G-2,'
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i
t R(eont'd) - Time at which the ground station receives the return

signal in Chapter 7 and Appendix A.

- Proper time at the receiving station in Appendix C.

t s - Sample time of the tracker range and range-rate data m r

Appendices A and C.

t v - Signal transmission time at the ground station in Chapter
7 and Appendix A.

t v - Signal turnaround time at the spacecraft in Chapter 7 and

Appendix A.

t o - Epoch time in Chapter 4 and Section 8.2.3.

,. U - Geoidal undulation in Section 7.4.

; U - Unit vector directed at the satellite and referred to the

geocentric inertial Cartesian coordinate system in Sec- t
_" tion 3.3.5. . ,./

U, V - TropospPeric delay terms in Section 7.6.3. }

,T - Unit vector directed toward the apex of the diurnal bulge"_B

expressed in inertial geocentric coc,rdinates in Section
4 5._).

UBx ' UBy' UBz - Components of the unit vector U_ in Section 4.5.6.

l]_ - Unit vector directed al,mg i th leg m satellite-to-satellite
tracking. See Section 7.3.3.

UN - Unit vector normal to the orbital plane in the direction of
the angular momentum vector. See Section 3.3.4.2.

U_ - Unit vector directed at the sun from a sbadowing body in
_ection 4.6. l.

UT - Urlit vector directed along the thrust axis and referred
to the geocentric inertial Cartesian coordinate system.
See Section 4.8.1.
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t j" " UT - Universal time.

UTC - Universal time coordinated. :

UTO - Uncorrected universal time.
J

UT1 - UT0 corrected for polar motion.

UT2 - UT1 corrected for periodic seasonal variations.

- Unit vector in the local plane z lp-axis direction and
='P referred to the geocentric inertial Cartesian system.

See Section 3.3.4.2.

U_, _ - Partial derivatives of Uv with respect to the right
ascension, _, and declination, $. See Section 4.8.2.

4

f E - Unit vector pointing along the vacuum uplink signal prop-

; agation path from the station to the spacecraft. See Sec-
tion 7.6.3 and Appendix C. t-

- Expanded state vector containing as components the
merged vectors R"and _. See Section 8.2.

- Vector of Gaussian noise in Section 8.4.

fi - Best estimate oi uncertain state and model parameters
in Section 8.2.3.

E* - Uncertain model parameters in u iu Section 8.2.3. i .'

E, E' - £ransformed position and velocitT -_ectors in Section 5.4.

u, Uy, uZ - Unit v.ectors in the body-centered t_e of date Cartesian _.
coordinate system in Section 3.3.8.3.

u( _ ) - Function used in Section _.7.1.

V - Spacecraft's velocity vector magnitude.

- Magnitude of velocity with respect to a medium produc-
ing an aerodynamic force in Section 4.5.

- Perturbing potential function in Section 5.4 and Appendix B.

, , G-25

t t

1976017203-560



V - Unit vector normal to the geocentric position vector and I =
lying in the orbital plane. See Section 3.3.5.

VB - Relative wind velocity in the spacecraft body axes coor- -_
dinate s)stem in Section 4.5.2.

I

Vre, - Velocity of the spacecraft relative to the atmosphere in
Section 4.5.

v - Local vert_c_! at the ground station in Section 7.6.3.

- Magnitude of spacecra_ velocity in Appendix B.

5

V - Velocity vector in S£ction 8.4.2.

v - Quantity denoting the Cowell velocity integrator for i

J linear systems in Section 6.3.

W - Weighting matrix in the least squares loss/unction in '
" -< Chapter 8.

/I

W - Unitvectordirectednormal to +._heorbitplanein the _
direction of the angular momentum vector. See Section •
3.3.5.

W' - Augmented weighting matrix in Chapter 8.

win+- - Weigbt of the (rn L1)st measurement in Chapter 8 and , _.
AppendLx E. _ i

X, Y, Z -- Inertia] CarLesian components of spacecraft position in
the mean of 1950.0coordinatesystem inSection3.2.1.

XB - Unitvectoralor4_thecylinderaxisinSection4.5.2. ,

XI, YI - Positioncoordinatesinthe eq dnoctialcoordinatesystem
in Sections 3.3.9.1 and 5.7.

X a0,Ya0 - Gimbal anglesfortheGRARR, ATSR, and USB systems.
See Eection 7.2.3.

Xss, Y_s - Gimbal angles for the USB system in Section 7.2.3.
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_ _ - Augmented state matrix in Section 8.4. ;

7: x - Transformed time variable in Section 3.6.

) m

x - Vector of slow osculating orbital elements in Section 5.8. ?

; _ x, x i , x i, x 0 - Epoch values of the solve-for or expanded state vector ef
c

_ p-dimension in Chapter 8. The vector xi is the best est_-
mate of _ obt_ned on the i th iteration. The vector _'_., is

_ the reference solution on the i th iteration. The vector _0
( (-

is the a priori estimate of the reference state.

_ x, y, z - Inertial Cartesian components of spacecraft position in

: the true of date coordinate system.
]

Xb' Yb ' Zb -- Rectangular Cartesian components of spacecraft position
" in body-fixed (rotattng) coordinates of the principal gra_ri- :

tat-ing body.
,%

j -

x_, y_, z_ - Components of spacecraft position in the pseudo body ....
fixed coordinate system in Section 3.3.2. "

1 x E , yz, z E Inertial components of spacecraft position ix, _ e mean of '
date coordinate system in Section 3.2.1. _"

Xep ' Yep ' z_p - Components of spacecraft position in the equinoctial coor-
dinate system in Section 3.2.5.

x' - Components of the space coordinates in Appendix C.

- Xtp, Ylp, zip - Components of space_raft position in _eocentric local
n!vue coordinates _,,u_?, east, north) in Section 3.2.3.

x _t, Y t t, z _t - Components of spacecraft position in topocentric loca ' "_
tangent coordinates (east, north, up) in Section 3.2.4.

x, - Quantity denoting tl_e Cowell position integrator for
linear systems.

i
Xop,Yop,Zop - Components of spacecraftpositionin geocentri_orbit ,

plane coordinates in Section 3.2.5.
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x ,yp - Instantaneousangularcoordinatesofthepolarmotion in j-( _ p
Section 3,3.2.2 (see Figure 3-11).

; xp, yp, Zp - Keplerian Cartesian components of spacecraft position
, inorbitalcoordinates,i.e.,Xp is directedtowaro peri-

gee and Zp in the direction of the angular momentum.
: See Sections 3.2.5 and 5.7.

• x , y , z - Keplerian unit vectors in Sections 3.2.5 and 5.7.p P p

x' z' - Components used in two-dimensional analysis of ellipsoidS' $

' in Section 3.3.6 to indicate that the y component is omitted.

: x, y_, zs - Coordinates of a point s on the surface of an ellipsoidal
planet expressed in body-centered rotating coordir.ates.
See Section 3.3.6.

s xv, Yv, z - Components of spacecraft position in the tehicle-fixed
: coorainate system in Sections 3.2.7 and 4.7.1.

l
/

x 1. . . x19 - DODS variables used in the Brouwer-Lyddane theory de- " ""
fined in Section 4.9.1.

x 20. • • xs9 - DODS drag parameters in Section 4.9.2.

Y - See X, Y, Z above.

- Dependent variable vector in the second-order linear dif-
ferential system of variational equations in Sections 4.1
and 6.4. i

'_ Y_' PT - Yaw and pitch angles, respectively, defining the mrust
direction in Section 4.8.

Y(t), Y{t) - Matrices obtained by integrating the variational equations
in Section 4.1.

- Matrices of position partial derivatives and velocity
partial derivatives, respectively, in Section 6.4.

Y(t ¸t j) - Predicted measurer:,ent residual uncertainty in Section 8.4.
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I Ym (t) - Linear combination of functions used in the interpolation
of ephomeris data in Section 3.6.

y - See x, y, z above.

- Fast osculating orbital elements in Section. 5.8.

- The m-dimensional vector of measurement data in
Chapter 8.

Yb - See x b, Yb, Zb above.

y_ - See xJ, y_, z_ above.

Yz - See x_, Yz' zz above.
.|

/{ y_p - See x_, Yep ' Z p above.
t
1

" _ Yi - JPL ephemeris function value at time t i in Section 3.6. sa c ;

Ylp - See Xlp, Ylp, Zip above,

] ,i Ylt - See xit, Ylt _ zlt abovc.

y_ - Half-thickness of the bottomside layer of the electron
density profile in Section 7.6.

yp - See xp, yp, Zp above. .

(

Ys - See xs, Ys' zs above. _ :

Yv - See x v, yv, z_ above.

Yo, - See x o,, yop , z o_ above.

Z - See X, Y, Z above.

- Altitude in Section 4.5.4.

Zm. Z - Zenith calibration constants in Appendix A.

z - See x, y, z above.

G-29 Y
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z (cont d) - Nondimensional altitude used in the Chapman profile for i
electron density in Sections ?.6.2 and 7.6.3.

- The q-dimensional consider vector containing as compo- .:
nents all model parameters whose values are known with

,+

limited c£rtainty but are not to be estimated. See Chap- i

ter 8.

+

Z b -- See xb ,Yb J Zb above. '.

z_ - See x_, y_, z_ above,

: zz - See xz,YE' ZE above. ;

Zep -- See Xep _ Yep _ Zep above.

_' z, - The z b axis intercept of the vector normal to the sur-
face of the ellipsoidal planet r._odel in Section 3.3,6.

__ z ip - See x Ip, Ylp, Zlp above. -" _:
-r

Zlt -- See Xlt $ Ylt _ Zlt above. Ii

Zop - See Xop,yo,,Zop above.

zv - See Xp, yp, Zp above. :
i

z_ - See :%, Ys, z_ above.

z,, - See x_,y_, % above. L

. _0 - A priori value of z" in Chapter 8. ,

,_ - Right ascension of the spacecraft relative to the true of "_

date system.

- Geocentric angle between the ground station and the sub-
ionospheric point in Section 7.6.3.

- Uniformization constant :n Appendix B.

8 - Unit vector normal to the orbit plane in Section 4.]0.

}
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L

; b,

i
I

• _. fl - Slow and fast elements, respectively, in Section 5.7. :

• i _' _ - Four-vectors in Section 5.4 and Appendix B. ,,

I a - True Greenwich sidereal time, the Greenwich Hour Angle ,
, _ of the true equinox of date, or the righ_ ascension of
"_ Greenwich.

aGM - Mean Greenwich sidereal time, measured in the mean
equator and equinox of date system.

a_ - Thermal diffusion coefficient in Section 4.5.4 (see Table
' 4-2).

- DS elements vector in Section 5.5.
] _

: i ai' /_i; a_, _ .. Coeffic:ents of the Adams-Cowell predictor formulas

(ordinate form) in C_ '_pter 6. ,z
r

; a - Right ascension of the sun in Section 4,5.6. •

i a T - Right ascension of the spacecraft's thrust axis in Sec-tion 4.8.1.

a t - Topocentric right ascension of the spacecraft in Sec- i
t

tion 9.1.
!

a - Right ascension of the spacecraft's longitudinal axis in _.
Section 3.3.12.

_J0..... _4 - Coefficients of polynomial characterizing the thrust axis
right ascension in Section 4.8.1.

'_1' "_2' _3 - Doppler factors for individual transmission legs in
satellite-to-satel_ite tracking in Section 7.3.3.

_zl..... % - DS elements vector in Section 5.5.

_" -, Flight path angle measured from the geocentric position ::
vec_r to the velocity vec_or in Section 3.2.3.

" - Unit vector lying in the orbit plane inSection 4.10. _

G-31
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i

t, t

_ /31' f12' _ - Doppler factors for individual transmission legs in
satellite-to-satellite tracking in Section 7.,3.3.

F T - Vector containing powers of the t .,ust burning time in
n

Section 4.8.2.

- Normal gravity at a point. See Section 7.4.

" _, - Unit vector forming right-hand system with _ and ¢_ in
: Section 4.10.

,

7e - Normal equatorial gravity in Section 7.4.

0 #

7i, _i' "7i - Coefficients in the Adams-Cowell formulas in Section 6.1.

J Y2 ' Ya' Y4, Ys - Auxiliary parameters defined on pages 5-44 and 5-45.

,I # $ • I

)2, Ya, _4, fs - Auxiliary parameters defined on pages 5-44 and 5-45.

A - Auxiliary angle used in determining the transformation /
from true of date selenocentric to selenographic coordi-
nates in Section 3.3.3,

A_-_,,Ad - Correction vectors used in the determination of refrac-v

tion correction in Section 7.6.3.

AE - Atmospheric elevation correction in Section 7.6.3.

/_f - The correction to the frequency fees, = 9,192,G31,770cesium

cycles of cesium per ephemeris second in Section 3.5.1.

AH - The correction to the mean right ascension to account
for lmtation in Section 3.3.2.1,

A_DRAG, ,_MI_RAG - First-order correction to the mean anomaly in Sections
5,9 and 4.10, respectively.

(A log,0 P)G - Geomagnetic activi_p correction to standard density cal-
culation in Section 4.5.4.

(_ log 10F_),,, - Density correction for seasonal latitudinal variat,on of
helium in Section 4.5.4.

R_'n'_aOUCmILYI_r,_U-_ --- OF THE _*
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(A log lop )LT - Density correction for seasonal latitude variation of the
lower thermosphere in Section 4.5.4.

(A log10 P)s^ - Semiannual atmospheric density variation in Section ,t.5.4.

Ar - Radius of fhe error hyt,ersphere in Section 8.5.2.
¢

5 r, Ar - Range and range-rate antenna mount corrections in Sec-

: _ tion 7.6.3.

= 5 s, 5"_ - First six components of A_ and 5_ in Chapter 8.

•AT® - Correction to exothermic temperature in Section 4.5.4.

_Tlgs8 - The difference ET - UT2 on January 1, 1958, ohomo_UT2

;_ minus the periodic terms "n the ET to A.1 transformation
_ in Section 3.5.1.

,_ L_t - Atmospheric _elay in the i th leg in satellite-to-satellite
^i tracking in Section 7.3.3. s i

I 5 t e - Counter delay in the phase readout digitizing equipment
,. in Appendix A.

5 t a - Correction to sequencer delay in Appendix A. _

A tp - Sequencer delay in Appendix A.

A t R - Two-way light time corresponding ,e range observable
in Section A.1. _ ,

/\ t_u - The reciprocal of the data recording rate in Section A.1. _

L_ tRR - Doppler count time interval in Chapter 7 and in Appendices ' i
A and C.

7_'u - Perturbations about _ in Section 8.2.3.

A_ - Best _stimatc of _ in a weighted least squares sense

in Chapter 8.

_-uT' :_u'_ - Correction vectors used in the o_ermination of refrac-
tion cnrrection in Section 7.6.3.

,,t,, G-33
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A-'_ - Perturbation in the solve-;or vector about the i th iterated
L

estimate, xi • See Section 8.2.

_x i - Best estimate of A x in a weighted least squares sense in :
Sectaon 8.2.

Ax i - Deviation of the a priori from the i th itelated estimate
of _. See Section 8.2.

" i A"_i - Vector of deviation between the actual measurements and _
the i th iterated estimate of the measurements. (Note: _

: A"y = _'y_ ). See Sections 8.1 and 8.2. ,

A---_- Perturbations of the consider vector g" about its a priori
value in Section 8.2.

., I A z i - Components of transformed state vector which constitute
/_I the coordinates of a h_persphere in Section 8.5.2. _

" I A_ - Difference between the adopted and true longitude in /'i
_! Section 3.3.2.2. "J

¢

Ap - Atmospheric range correction in _ection 7.6.3. )

A_ - Atmospheric range-rate correction in Section 7.6.3. !

Apc - Density correction factor Jn Section 4.5.5.

- Computed range differenc _ in Appendix C. _'
" t_

5_ - Spacecrat't tIans._..'o.r time delay in Chapter 7 and
Appendix A.

A,_ - Difference between the adopted and true latitude in ':
_ Section 3.3.2.2. ,i

, - Declination angle measured north from _ht, equator.
1

- Quantity useJ in the determination of atmospheric r_-
fraction correction to the elevation augle in Section 7.6.4.

- Dirac delta functloh in Section 8.4.

G-34
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_° G" - Coefficients of the ordinate form of the Adams-Cowell 1i' i ! 'formulas in Section 6.7.

_ij - Polynomial coefficients in densi_ calculation in Section
4.5.4.

- Kronecker delta function in Sections 4.8.2 a,d 8.4.

G - Declination of the sun.

_T - Declinationof_e spacecraft'sthrustaxisinSection :_:
4.8.!.

_t - Topocentricdeclinationof the spacecraftinSection9,1.
Z

- Declination of tltv spacecraft's longitudinal axis inV

Section 3.3.1P.

_0..... b4 - Coefficients of polynomial characterizing the thrust axis
declilmtioninSection4.8.1. j_

i _._ _ i, b_, 3w - Perturbations in the orbit inclination, rig_,_ ascension ofthe ascending node, and argument of perigee, respectively,

in Section 4.10. ) ,_

8t - Timing biasinobservationdatainSections7oiand 8.2. !

_a, G_, bT - Rotationalperturbationsaround _, _, and _, respectively,
l=iSection 4.10.

_ Differencebetween thetru_and mean obliqul_yinSee-

.. tion3.3.1.2.

G_ - Nutation in longitude in Section 3_3.1.2.

_ _ - Small param¢'er propo,-tio,..A1 to the perturbing aceelera-

i ticninSection5.8.
_: - Improvement ratio criterion spe:lfted for least square_

z

_ iteration convergence in Sectton 8.6.3.

e, _ - Mean and true obliquity in Section 3.3.1.2.

_ G-35
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2

"', _(t) - First-order Gauss-Markov process rcprescntin_' _ne un- / "
_, modeled acceleration au in Section 8.4.2.

e - Local error of the numerical integration in Section 6.9. _

: _ ( ) - Denotes the expected - ",_

: {0 - Precesamn angle in Section 3.3.1.1.
}

_ :7 - Surfau_ reflectivit_ coefficient in Section 4.6.

_ - Auxiliary parameter deflr ed on pr,ge 5-44. _

0 - Flight path angle in Section 4.10.

: - Transition matrix between perturbations _.n solvc-fc,
variables _nd perturbations in consider variables i_
Section 8.2.3. ';

_" - A_ilimT varameter defined on page 5-44. / ,:

0, 8M - Orbital angle and mean orbital angle° respectively, me*.s-
ur_d a!ong th? lunar equator from the desce,ding ,.o_" ,.f
the _arth's orbit to the lunar prime meridian. ,See Sec-
tion 3.3.3.

,, c._p- .arecession angle in Section 3.3.1.

_, - Euler angle used in the _xansformation frou_ __i,;_.,_centric
to selenographic ccardin,'_c_s in Sectim_ 3.3.5.

'-, X - Longitude measured east from the prime mer_di_'n.

': _ Equinoctialand Berrlck mean longitudesinSeer,ms 3._.6
_d 3.3.9.1. "

- Lag anglebetween th_ san lineanJ the _pex of thediurnal ,
bulge _n Section 4.5.6,

_^' _r - Adopted and instantaneous (true) longitudes, respectively,
in Section 3.3.2.2.

_'z- S_leuogr._pb!,.long_.tudeofthe earth_.r,Section4.4. _.
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_ | _- h_,

....... ,4.11_ ........ - ...... Jr .......... | I ii _ " _4_,_

" i J _ :

_" _ _ - Geocentric mean longitude of the moon in Section 3.3.3.

_ - True right ascension of the moon in Section 4.4.

- Longitude of the magnetic north pole in Section 7.6.
I

4 - l_.ean longitude for retrograde orbit in Section 3.3.11.1.

" _ - Longitude of the tracking stai_on in Sections 3.3.7 and 9.1.
S

- Gravitational parameter of the reference body, i.e., the _

product of the universal gravitational parameter and the
mass of the body.

u - Eclipse factor in Section 4.6.1,

_ - Electromagnetic signal frequency in Section 7.6.

_'b - Bias frequency on Doppler signal in Section 7.3.3 and
_i Appendices A and C. Is:

! 1 ud - Doppler signal frequency in Appendices A and C.

z,h - High frequency modulation (ranging) tone in Appendix A. ""

ui, - Counter input frequency in satellite-to-s_elltte tracking _,
in Section 7.3.3.

_i, - Average value of ui, over the Doppler count interval ';

_._ in Section 7.3.3. .)

- uL - Low frequencymodulation(ranging)toneinAppendix A. :-

_,_ - Signal fre_'encs' received at the ground stattcn in ' 4
Appendices A and C.

- System reference frequency for satelllte-to-,atellite _

tracking Doppler measurements in Section 7.3..% , ;_

- Reference frequency for the GRARR and ATSR range and _,
:' !. z_R1 , _R2

[ range-rate measurements. See Appendices A ar.d C.

t]T - Frequency of signal transmitted at the tracking station ':
¢

,_ in Appendices A and C. ,_

_'" G-37 ,:
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4_

_ v t , v r - Frequencies of transmitted and recex-Ted signals in ]
Appendix C.

, v - Frequency of signal received at the spacecraft. See
Appendices A and C. ""

i

_E - Normalized time in Section 5.6.

_ _ p - Precession angle in Section 3.3.1.

7 p - One-w:: r range from the tracking station to the space-
craft in Chapters 3, 7, and Appendix A.

- Planet's mass density in Section 4.3.

- Atmospheric density in Section 4.5.

!
] - AverageinSection°f7.2.theuplink and downlink propagation distances J

r P' V' 9 - Oblate spherical coordinates in Section 5.12.
4

_ p. - Atmospheric density in Section 4.5.2.

; Pa' Pb - Range ambiguity numbers in Appendix A.

p._g - Average range rate over the uplink and downlink paths
in Chapter 7 and Appendices A and C.

PF - Dynamic weighting factor in Appendix D. I

Pi - Atmospheric constituent densities in Section 4.5.4.

_k

_ - Slant range from tracking station to spacecraft in Sec-
tion 9.1.2.

Pii - Correlation coefficient in Section 8.5.

PL - Four-leg round trip range in satellite-to-satellite track-
ing in Section 7.3.3 and Appendix C.

/_L - Average four-leg range rate (in satellite-to-satellite
• tracking) over the Doppler count interval 5 tk_. See
! Section 7.3.3.
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L_

O Plt i - Measurement vector in station-centered topocentric !

local tangent coordinates in Section 9.2. i :
PM - Physical libration in the inclination of the mean lunar

equatorinSection3.3.3. ,I

PM' Pr._ - Maximum and minimum densities in Section 4.5.6. i

Ps - Two-leg round trip range in satellite-to-satellite track-
ing in Section 7.3.3 and Appendix C. i

|

PS - Average two-leg range rate (in satellite-to-satellite
tracking)over the Doppler countinterval/_tRR in !i
Section 7.3.3.

Ps - Summed atmospberic density in Section 4.5.4.

Pu' Pd - One-way range distancecorrespondingtotheuplinkand i
,:_ downlink signal path in Section 7.2.3 and Appendix C. !

/P

Pl ' P2 - Ranges from first and second stations to the satellite in !_"_

n VLBI tracking in Section 7.4. _!
4 _]_ i

PI' P2' P3 - Systematic error coefficients in the atmospheric density
r model in Section 4.5.

c_ - Sample standard deviation in Sectim_ 8.6.4.

_ - V_rianceof themeasurement noisecomponent n_ in
Chapter 8,

q

_" c_k - The standard deviation of the k th observation in
Chapter 8.

. "_k " A priori standard deviation of the noise on the k th obser- _
_" ration in Section 8.1.

_, Fk - Standard deviation of the data reduction curve fit obtained
- k

I duringpreprocessingofthe k th observationinSection8.1. ,

}_ _ - H_,yn'sphysicalllbrationinthemean rightascensionof
_ M

"° theascendingnode ofthelunarorbitinSection3.3.3.

; _:" G-39
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p,

; O'1,... , 0"6 -- Eigenvaluesof PA in Section8.5. ": X

cr2 - Estimate of the variance, of A s in Section 8.2.3. _
,,: A_ i _ _.

: _ _ 2 - Estimate of the variance of A z i in Section 8.2.3.
/_z, t,"

w = Auxiliary angle used in the calculation of the uncorrect(d
exospheric temperature in Section 4.5.4. :"

-y

- Time measured from effective ignition of the thruster in :
Section 4.8.1. _

: - The independent variable (time element) for the h_ans- :
formed time-regularized system in Sections 5,4, 6.10,

,: and Appendix B.

_, - Phase difference time interval in VLBI tracking in Sec- _"
: ', tion 7.4. i
!>

_i _ p_ - Hayn's physical libration in longitude in Section 3.3.3, _/'i

_ - Perturbing energy in Section 5.5 a_d Appendix B. _:

' - State transition matrix in Section 6.5. _,

- Augmented state transition matrix :n Section 8.4. ,

_, _b° - Geodetic and geocentric latitudes, respectively, in Chap-
ters 3 and 7.

",, - Geocentricand geodet'tclatitudes,respectively,in Chap- , ,
_" ter 4 ' '

,t

_(T_, to) - State transition matrix relating state perturbations at _:,
time t o to state perturba __ns at time T_. See Chapter 8. /

q_(t, to) - Transition matrix relating perturbations about g(t) at times

t and t o in Chapter 8. * , !
a

_A' _w - Latitude corresponding to the adopted and true poles, re= I
spectively, in Section 3.3.2.2.

_z - Selenographic latitude of the earth in ,_ection 4.4, _
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_h - Geocentric latitude (declination) of the moon in Section 4.4. !

_p - Geodetic latitude of the magnetic north pole in Section 7.6. _

_, _'_ Geodetic and geocentric latitude of the tracking station in

Sections ;3.3.7 and 9.1. _ ::

_T -- S_'_' _A' (_T above.

1

f _ - Roll angle of the spacecraft in Section 3.3.12.

:: i" _ - Gravitational l_tential in Sections 4.3.1 and 4.4. i

- Angle between the satellite position vector and the ape:" i
of the diurnal bulge in Section 4.5.6.

- Generalized true anomaly in Section 5.5.

- Geopotentialfunction(sum ofthe normal geopotential_N

and the disturbing potential _r )" See Section 7.4. /"

! j - Abbreviation for the covariance matrix of the estimatedstate in the absence of consider variables in Section 8.3.

_0u - Disturbing potential in Section 7.4.

7JN - Normal geopotential in Section 7.4. _

- Right ascension of the orbital ascending node.

I_ - Skew matrix whose elements are components of the earth's
"_ rotation vector Jn Section 4.5.3. ,

_' - Euler angle used in transformation from selenocentric to i
selenographiccoordinatesinSection3.3.3. _

_M - Mean rightascensionofthe ascendingnode ofthe lunar _ I
_ orbitinSection3.3.3. _ :

_ _ - Argument of perigee of the satellite orbit. _;

_ - Frequency related to the negative of the total energy in ,i

Section 5.4 and Appendix B. _ "
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oo(com'd) - Rotation rate of the earth in Section 7.4.

, _ - Angular rotati,_n vector of the earth expressed in mean
of 1950.0 coordinates in Section 4.5.2.

)

5.

- State noise in Chapter 8.

_M - Moon's argument of perigee in Section 3.3.3. ii

(

• ¢
'2

:

\

, ?

-i

t

o, _, ;

r

! :
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(_ Subscripts

i ,
( )^ - adopted qusntity; averaged quantity; or model replacement _ -.

j •

( )a - apofocus;atmospheric;or apparent _" X

( )._ - attitudecontrol _ id

• l '
i ( )_ - average

( )B - spacecraft axis

( )b - body centered; tmdy fixed; burn; or bias

( )c - correction; or coarse baseline (Minitrack) i

#r : -

i ( )_ - computed; cylinder; or minimum exospheric

_-- ( )D - drag; aerodynamic; deviation; or dist_arbing • /..

( )d - Doppler; or downlink J

{ -'_ ( )z - earth; or mean of date

( )E-W - east-west ':_
7

(), - equatorial; ephemeris; end plate; or electron density i_

i ( ),p - equinoctial system ;,
t ( )F - frame; force; or fine baseline (Minitrack)

i ( )FM - midframe ,,_!J

( )f - final

( )o_ -Greenwich mean _

( )_ - geomagnetic; Greenwich; or group

( )I -- lonospberlc

( )_o - mutual nonspherical gravitational attraction of earth,
t

and moon _ }
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t

' I ( )i_ - counter input _

_' I ( )j - refe__nce (centr_.l) body _ ._;

- I ( )x - Keplerian

I'i ( )_ - bodyk

o I ( )L -- four-way ranging; or low frequency _

i- i ( )tp - local plane ii

( )It- localtangent !

( )M - moon; maximum; or medimn baseline (Minitrack) t

_: ( )M - midpoint !

: i i

i ( )_ - minimum; maximum (Chapter 7);or middle point

( )N- normal

( )NS - non_pherical _ i

( )N-S- north-south

( )of- orbitalframe ,_ _
'I

, ( )op- orbitplane _

( )p_ - point mass i :

( )p - polar; pertfocus; precession; solar paddle; geomagnetic; ! _
: planetary; orbital rectangular coordinates; or phase

: ( )R" groundreceiver; or reference i ;;

( )R_- Dopp_';rcount i

( )_T - round trip

( )r = generalized receNer (Appendix C)

G-44 :,1
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""i

( )tel - relative to the atmosphere

( )s two-way ranging

( )s^ semiannual ,

( )SR - solar radiation

(), o tracking station; solar; sample; selenographic; surface;
spherical; or sea level

( )T " ground transmitter; thrust; tropospheric; or true (instan-
taneous) pole

( )T_ - attitude control system

( )t - time; topside; topocentric; or generalized transmitter
(Appendix C)

(). - uplink _/"

_.} (). - spacecraft; or vehicle fixed

(). - inflection point

( )_, ( )y, ( )_ -corresponding axis

( )0 - mean elements at epoch; earth centered; initial conditions;

actual; or a priori (Chapter _'j _
I

"'\ ( )so - GRARR and USB 30-foot antennas

( )_s - USB 85-foot antennas ,_

I ( )_ - corrected exospheric
#

ll;,
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Superscripts

;: ( )c - corrected values
_,

.; _ ( )d - day I"• j
?_ ( )h - hour

*. . ( )m - minute

'?',-, ()i) - predicted ,_ ,ues

i'
, ( )" - second

_ , ( )T - transpose

"!'l- (_ -perturbedinitialc°n'l_ti°ns

Z ._)

\
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J )Opera_ional Symbols

V - hnear gradient; or backward _i_ference operator

( ) × ( ) - vect,_r cross product ""

( )" ( ) -vector dot product

E s - shifting operator (Section 6.1)

• D -.differential operator (Section 6.1)

I - identity operator

(") - first derivative with respect to time

(") - second derivative with respect to time

(') - best estimate

(-) - vector; or average value

) _ ( ) - expected value

co,_ ( ) - covariance

¢ar ( ) - variance

()' - first derivative with respect to the variable s (Chapter 5)

\x ( )" " second derivative with respect to the variable _ (Cl_.ap-
ter 5)

q
t

, i

I
#

d

#
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"_ hNDEX :

2

+ This index consists of an alphabetical list of significant topics contain,-_ Jn this

,_ document. Cross-r_ierenchlg is used where _ppropriate, The notation appear- ',
_ lag in parentheses after certain topics refers tv the section or chapter which is i

primarily concerned with that topic. The hyphenated numbers refer to the pages
where the specified topic is mentioned. A page number immediately following
a section or chapter number indicates the beginning page of that section or chap-

" ter. For example, the following entry

Mean of estimate, (8.2.1) 8-8, 8-50

indicates that the "mean of estimate" is discussed in Section 8.2.1, which begins
_" _ on page 8-8, and thatitis_Jsomentionedon page 8-50.

_ Accelerometer data, 4-73
'. Acr_eleration,

: of earth due to oblateness of earth and moon, 4-20 f#
•. of moon due to oblateness of earth and moon, 4-20 ">_

• f unknown, 8-42
, _._ unmodeled, 8-37

Adams integrationformulas, 5-8, 5-9, 6-1, 6-2

: Adams-Bashforth formula, 6-1
Adams-Cowell integration formulas, (6.1) 6-9

_ Adams-Moulton predictor-corrector coefficients, 6-6
Aerodynamic force coefficients, Table 4-1, 4-26

: cylinarical spacecraft, 4-25, 4-27, 4-28
cylindrical spacecraft with solar paddles, 4-28, 4-29

spherical spacecraft, 4-25 through 4-27 i
L Aerodynamic forces, (4.5) 4-22 through 4-32

aerodynamic force modeling, (4.5.2) 4-24 through 4-28 '
asseciated partial derivatives, (4.5.3) 4-29 through 4-32

Algorithm, batch estimator, (8.2) 8-6 i

Analytic partial derivstives, (4.10) 4-75 through 4-36
conversion of differential corrections, (4.10.3) 4-83 through 4-86
definition o! )ermrbation variables, (4.10.1) 4-75 through 4-79 _ .
state transition matrix elements, (4.10.2) 4-79 through 4-83

Angles onlyearlyorbitmethods (9.I)9-1 _ '
Antenna mount corrections, _7.7.2) 7-76, 7-77
ApplicationsTechnologySatelliteRange and Range-Rate (ATSR) System,

i (see Goddard Range and Range-Rate (GRARR) System)

, _ I-1 :

_4

.............. -i.i," ..lll; ' ..... ........... '
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Atmospheric density models, 4-22, 4-2_

comparison of, (4.5.8) 4-60 i
Jacchia-Roberts model, (4.5.4) 4-33 through 4-49 !

modified Harris-Priester model, (4.5.6) 4-53 through 4-60 )
Atmospheric effects, (7.6) 7-43 through 7-75

Chapman profile refraction corrections, (7.6.37 7-52 through 7-63 !,
Doppler corrections, 7-55 through 7-64 i
elevation angle-dependent corrections, 7-56 through 7-59
range correction, 7-52 through 7-56 t

' ionospheric m,_els, (7.6.2_ 7-44 through 7-52
electron density profile parameters, 7-49 through 7-52

,_, empirical worldwide profile, 7-47 through 7-49 1

;, m(._tffied Chapman profile, 7-46 !
sequenti-,1 urofile refraction corrections (7.6.4) 7-64 through 7-75 _ ,

ionospheric correction, 7-68 through 7-75 ! _:
tropospheric correction, 7-65 through 7-68 _

/ J troposphere m_del, _7.6.1) 7-43, 7-44 i

_ Attitude control effects, (4.7) 4-64 through 4-65, 2-18 |

i _ partial derivatives, (4.7.. 2) 4-66 !/?perturbation model, (4.7 1) 4-64, 4-65 _.

. Averagg}ormation,(5.8) -45,5-5 |
; equincbtial VOP formulation, (5.8.3) 5-40 ! !:
_ Keplerian formulatfon, (5 8.4) 5-40 ( , ] '

BaLch estimator algorithm, (8.2) 8-6 I _
Be3selian solar year, 3-1 ,,

: Bot_guerts formula, 7-56 _.j

; Brouwer drag parameterg, 4-78, 4-79 ] :.
'. B_youwer-Lyddane formulation, (5.10)5-51, 4-75, 5-4, 5-48 t

Brouwer theory, (5.9)5-42, 2-6:, 5-1, 5-39, 5-51, 5-58, 5-5_, _-60 i "_

l._. C-Band radar system, A-S, A-10
• early orbit data, 9-24 _ ,-
_ functional description, A-9 _ "

; preproce,ssL_g description, A-10 _ ,
Canonical variable.s, 5-1, 5-2, 5-16

force, ,5-18
Cassini_s lsws, 3-26
C _lestlal equator, 3-_.
Celestial _.uh,_re, 3-2
Chapman profile, 7-46
Chapman profile refraction corrections, (7.8.3) 7-52 through 7-6_

Doppler corrections, 7.-59 through '_-64

. elevation angle-dependent corrections, 7-56 througl'. 7-59

I-2 '_

"_ ..,.,,,,.f,_, ......... _..................i --'- _---- -_- ...... -- "--: .........7. ........... _a
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"! !_ Chapman profiiarefractioncorrections(cont'd.)
ionosphericmodel for,7-46

k range correction, 7-52 through 7-55
_ Chebyshev series,(5.6)5-26

Considervariables,2-13
Considerv_.riables,s priori,8-6, 8 J, 8-24 i
Considervector,8-6, 8-12, 8-15, 8-27

I uncertainty, 8-51• Convergencecriteria,8-61

_ Correlation,8-11, 8-19

between stateand uncertainmodel parameters, 8-19
F coefficient, (8.5.4) 8-56

of est_-mat_ and consider variables, 8-23
of errors in a priori solve-for and consider variables, 8-11
of errors in solve-for and consider variables, 8-11, 8-12

•'. i of solve-for and consider variables, timewise propagation, 8-24
_ Coordinate systems, (Chapter 3)

: ; body-centered equatorial inertial, (3.2.1) 3-3
rect_ngular Cartesian, 3-4

/spheric_1polar,3-4 .,
;_ body-centered rotating, (3.2.2) 3-4

geodetic, 3-5

l rectangularCartesian,3-5

sphericalpolar,3-5
• local plane, (3.2.3) 3-5

rectangularCartesian,3-6
sphericalvelocity,3-6

orbitplane,(3.2.5)3-7
equinoctial,3-8

i Keplerian, 3-7

. ". i orbitalelements, (3.2.6)3-8
\_ equinoctial,3-9

Herrick, 3-9
, Keplerian, 3-8

_- seleno_entric,3-26
_ selenographic,3-26
: topocentriclocaltangent,(3.2.4)3-6, 7-5

rectangular Cartesian, 3-6
[ spherical position, 3-7

vehicle-fixed, (3.2.7) 3-10
_' rectangular Cartesian, 3-10
_' Coordinate time, C-6, C-8, C-9, C-IO, C-12
_. Coordinatetime derivatives,C-9

_'J" I-3
\
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Coordinate transformations, (_. 3) 3-10, 2-18 1
,- body-centered true of date to orbit plane, (3.3.5) 3-39 -_

body-fixed to geographic, (3.3.6) 3-40

: earth-fixed to geodetic, (3.3.6.3) 3-44 _
_, geodetic to earth-fixed, (3.3.6.2) 3-43
• earth-fixed to topocentric local tangent, (3.3.7) 3-47 .::

:_ , equinoctial to Cartesian, (3.3.9) 3-58 ' i
Cartesian coordinates to equinoctial elements, (3.3.9.2) 3-60 _

== . equinc,_ial elements to Cartesian coordinates, (3.3.9.1) 3-58
_ Herrick to Cartesian, (3.3.10) :_

Cartesian coordinates to Herrick elements, (3.3.10.2) 3-63
Herrick elements to Cartesian coordinates, (3.3.10.1) 3-62 :L

:: Keplerian to Cartesian, (3.3.8) 3-49 ,.

: body-centered true of date to Keplerian elements, (3.3.8.3) 3-55 .
Keplerian elements to body-centered true of date, (3.3.8.1) 3-49

, Keplerian to equinoctial and Herrick, {3.3.11) 3-64
_ y_ Keplerian to equinoctial elements, (3.3.11.1) 3-64 !_

, ,_ Kepleriaa to Herrick elements, (3.3.12) 3-64

i mean of 1950.0 to true of date, (3.3.1) 3-11
, _ mean of date to true of date, (3.3.1.2) 3-14

mean of 1950.0 to mean of date, (3.3.1.1) 3-12 .._... _:
spherical to Cartesian, (3.3.4) 3-34

Cartesian position and velocity to spherical, (3.3.4.2) 3-36 _, ._
spherical position and velocity to Cartesian, (3.3.4.1) 3-34 _

selenocentric true of date to selenugraphic, (3.3.3) 3-26
true of date to body-fixed, (3.3.2) 3-18 _i

pseudo body-fixed to body-fixed, (3.3.2.2) 3-20 i
true of date to pseudo body-fixed, (3.3.2.1) 3-18 /

vehicle-fixed to body-centered true of date, (3.3.12) 3-65 _
Covariance, i.

of estimate, (8.2.1)8-8, 8-23 -_

-. of state noise, 8-31, 8-32, 8-42 , :_
Covariance matrix, _

of error, 8-3, 8-4, 8-12, 8-29, 8-30 i\

augmented, 8-44, 8-50
derivation of, (E. 1) E-1 _!

uncertainty (error), 8-5
interpretation, (8.5) 8-50
of state, 8-18 _" C

timewise propagation of, 8-17, 8-24 , ,!
transformations, (8.2.3) 8-15 ,,

i

Cowell method, (5.2)5-8, 4-2, 5-1, 5-3, 5-5, 5-26, 6-1, 6-2, 6-11, 6-20, 6-25
time-regularized, (5.3)5-9, 5-3, 5-5, 5-9, 6-1 _

Critical frequency, 7-49

I-4 "_
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Data Management Program, (2.1.8) 2-4
Data Simulation Program, (2.1.6) 2-3
Delaunay elements, (5.5)5-.16, 5-42, 5-43, 5-59 ;

Delaunay-Simi!ar formulation, (5.5)5-16, 2-9, 5-3, 5-4 :_
Density corrections, 4-36, 4-27 _

geomagnetic actfvi_7, 4-36, 4-45
seasonal latitudinal, 4-36, 4-37, 4-45, 4-54 ' :

seasonal latitudinal, helium, 4-37, L'-45
semiannual variation, 4-36, 4-45, 4-54 ._

Differential correction process, 7-1, 7-2
i_ Differential Correction Program, (2.1.1) 2-2

a priori input, 8-19 _

comuutational procedure, (8.2.4) 8-19
oata management, 8-19
estimation computation, 8-22
fnner processing loop, 8-21
outer iteration loop, 8-21
termination of outer iteration loop, 8-22, 8-60

! Differential _<tuations,

class I, 5-2, 5-9, 5-26, 6-1, 6-2 _ ;
class II, 5-2, 5-8, 5-9, 6-1, 6-2 .z

Direction cosines, Minitrack, 7-11

! I_ Dispersion, 8-12 (see also measurement uncertainty)4.

Diurnal bulge, 4-54, 4-56, 4-57

Divergence, filter, 8-36
• DODS variables, 2-14, 4-75 through 4-86, 6-12

• Doppler corrections due to atmospheric refraction, 7-59 through 7-64 _
• Doppler cycle count, 7-15, A-3, A-7, A-11, A-l°., A-13, A-32 _

destruct, 7-27, 7-28, A-32, C-7 i-
• nondestruct, 7-28, A-12, A-32, C-7

Doppler measurements, 2-12, 7-20 _ '_

"',\ __ Doppler observation, (7.3.4) 7-27 through 7-34 _
formulation of, 7-28 through 7-30 '-!
partial derivatives of, 7-30 through 7-34 , ,

i Doppler shift, relativistic, C-3, C-4, C-5, C-6, C-11, C-14
D_uble r-Iteration method, early orbit, (9.1.3)9-14, 2-14, 9-1, 9-2 "_:

Dynamic model compensation, _
advantages of, 8-37

,. procedure, 8-41 _

Dynamic stability, 5-5

I Dynamic weighting factor, D-l,
D-2

i Dynamics, spacecraft, (2.3)2-17, 2-18 ,_
!

_ " I-5
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Early orbit, angles only methods, (9.1) 9-1 /
Early Orbit Determination Program, (2.1.5) 2-3
Early orbit methods, (Chapter 9)

Double r-Iteration method, (9.1.3)9-14, 2-3, 9-1, 9-2
Gauss method, (9.1.2) 9-6, 2-3, 9-1, 9-14, 9-17

Range and Angles method, (9.2) 9-24, 2-3, 9-1 i
Earth-moon system, (4.4) 4-18

: Editing of observation residuals, (8. _. 2) 8-60
. Electron density profile, 7-49 throug,1 7-52
• Electron density profile parameters, 7-49 through 7-52

Element sets,

' Brouwer Iaean, 5-45
Delaunay-Similar,(5.5)5-16,5-4

equinoctial, (5.7.2)5-33, 5-4, 5-31, 5-38
• Keplerian, 5-4, 5-31, 5-38, 5-45

Kustaanheimo-Stiefel, 5-4

_Y rectangular, 5-4, 5-31, 5-34
' Encke method, 5-58

' i Ephemeris Comparison Program, (2.1.3) 2-2
*_ Ephemeris Generation Program, (2.1.2) 2-2 ,,

: Ephemeris data, 3-74 through 3-80 ../
: polynomial representation of, (3.6) 3-74

Equations of motion, 6-2, 6-8, 8-37

Error analysis,
application, (8.3) fi-22
problems, 8-24 h

Error Analysis Program, (2.1.7) 2-3 i
Error control, (6.9) 6-21
Estimate, '

a priori, 8-3

bias, 8-8
classical equation for best, 8-3

co_arim.ce of error, 8-10, 8-29
m_an, 8-i0 ,
minimnm variance, 8-30

state correction, 8-29

Estimation, (Chapter 8)
Estimation model, (7.8) 7-77 through 7-79
Estimation, sequential, (8.4) 8-27, (Appendix E) E-_I /

process,8-1

Estimator,

advantageof recur..-ive,8-33
algorithm,9-1

gainmatrix, 8-11

I-6 ""
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:, Estimator, (cont'd.) ,:
8--.: Ka!man minimum variance, o,_

sequential adaptive, 8-42
sequential weighted least squares, 8-27

_: weighted least squares, 8-1, 8-22
' weighted !east squares variation, _-4

: with respect to consider parameters, 8-25 i-
with respect to dynamic parameters, 8-25

Expected value of deviation, 8-8
; of linearized observation residuals, 8-9

Fast elements, 5-17, 5-31, 5-38, 5-40
: F_gure of the earth, (3.3.6. i) 3-40

. } Filter -,
i | Extended Kalman, (8.4)8-27, 2-3, 2-13 '_

_ derivation of, (8.4.1) 8-28

! nonupdated reference trajectory, 8-33
: prediction formulas o{, 8-31

update equations of, 8-30 /:
J /,S

updated reference trajectory, 8-33, 8-34 ._
Jazwinski, (8.4.3) 8-42, 2-3

derivation of, 8-44
prediction equations, 8-47
update equations, 8-47

Filter Program, (2.1.4) 2-2, 2-3
a priori input, 8-48
computational procedure, (8.4.4) 8 t7 *_

data management, 8-48
data se_ loop, 8-50
processing loop, 8-48 "_

" Filtering,
dynamic model compensation, (8.4.2) 8-37 v
statistical adaptive, (8.4.3) 8-42 .,

Fllght sectioning, 2-18

Gain m_trix, 8-11, 8-30, 8-35, 8-45 ,
2auss method, early orbit, (9.1.2)9-6, 2-14, 9-1, 9-14, 9-17

f :'
Gaussian planetary equation, 5-31

Gaussian VOP formulation, (5.7) 5-30, 5-38 , (
General perturbation method, 2-6, 5-1, 5-3, 5-4 ,"

! Geoid, 7-34 through 7-38 _
Geoidal undulation, 7-36, 7-37, 7-40

Gibbs method, 9-6, 9-11

:

p )'

/

} :'i I-7 /
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Globaliteration,8-34 ' ]
i Goddard Range and Range-Rate (G_RR) and ATSR systems, A-I throughA-8, :

C-II, C-13, C-14

datasmoothing,A-3
early orbit data, 9-24
functionaldescription,A-l, A-2, A-3 , :
gimbal angles,A-6

< preprocessingdescription,A-4, A-5, A-6
processingcomputationsand interfaces,A-5
range computation,A-6, A-7
range-ratecomputation,A-7, A-8

Greenwich Hour Angle, 3-67L

GTDS overview, (Chapter 2)
GTDS programs, (2.1) 2-1 through 2-4

Data Management, (2.1.8) 2-4
Data Simulation,(2.1.6)2-3, 2-16, 2-17
Differential Correction, (2 1.1) 2-2 2-16, 2-17 _
Early OrbitDetermination,(2.1.5)2-3
Ephemeris Comparison, (2.1.3) 2-2

Ephemeris Generation, (2.1.2)2-2, 2-6, 2-16 t/_
Error Ar.alysis, (2.1.7)2-3, 2-4, 2-17 </ _
Filter, (2.1.4) 2-2, 2-3

GTDS system capabilities, (2.2) 2-4 through 2-17
earlyorbitdetermination,(2.2.4)2-14, 2-15

estimationtechniques,(2.2.3)2-13, 2-14 {
observation modeling, (2.2.2) 2-9 through 2-13 : ;

data preprocessing, 2-10
observation models, 2-12 '_
observation types, 2-10

optional modes of operation, (2.2.5) 2-16, 2-J 7 _ ._
trajectorygeneration,(2.2.I)2-6 through2-8

Hamilton-Jacobidifferentialequations,5-I, 5-60

Hamiltonian,5-17, 5-18

Harris-Priester atmospheric den._ity model, (4.5.6) 4-53 through 4-59, 4-23
partial derivatives, (i. 5.7) 4-57 through 4-59

Index of refraction, 7-44
Indirect oblation perturbation model, (4.4) 4-18 through 4--22
Intermediate Orbit formulation, (5.11)5-58, 2-8, 5-3, 5.-4, 5-5
Interpolation, 6-21

Introduction, 1-1, i-2
•Ionosphere models, (7 6.2) 7-44 through 7-52

mmt

I-8
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_ JPL ephemeris, 3-)4, 3-17 IJacchia-Roberts atmospheric density model, (4.5.4) 4-33 through 4-49, 4-23

partial derivatives, (4.5.5) 4-50 through 4-53 ! _

KS matrix, 5-13 _ }

Kalman gain, 8-30, (see also gain matrix) _
Kalman filter, (see Extended Kalman Filter) }

Kepleris equation, 5-51 ]
Kustaanheimo-Stiefel formulation, (5.4) 5-10, 2-9, 5-3, 5-4 _

_ Laplacian, 4-9
Least squares, weighted, 8-1, 8-6, 8-7
Legendre functions, 4-11
Libration of the z_oon, 4-18
Light time correct:ion, (7.7.1) 7-76
Light time mode]ing, {7.3.2) 7-21
Linear gain, optimal, E-3
Linearity, 8-3, 8- _.. 8-34

Loss h_netion,8-2, 8-3, 8-6, 8-7

i Luni,_olarprecession_md nutation,3-12, 4-18 .y"
# Magneticdip, 7-51

i _ _ ] Matrix identities (sequential estimation), (Appendix E) E-1
_' Matrix inversion,_8.6.i)8-57

Matrix of functional sensitivities, 8-26

i _ Matrix ofpartialderivatives,8-2

_t Mean of estimate,(8.2.118-8, 8-50
_. Measurement model, 8-4_t

Measurement noise, 8-9, 8-12, 8-42, 8.-43 (see also observation noise)

., _ covariance, 8-9 ; _, "
\ _ expected value, 8-9

"_i Measurement urocess,statisticala_sumptionof,8-3, 8-4

Measurement residuals,8..7,8-9
Measurement uncertainty, 8-12, 8-30

•_ Meridian,

f "_'oca;, 3_,2prime, 3-2
Minimization,nonlinear,8-.2 " ;

Minitracksystem, A-14 thrm._ghA-27
ambif_itydata, A-20

ambiguity rosolution, A-24
antenna fiel,_ corrections, A-26

data lineari_ ation and smoothing, A-19

. _' I-9
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Minitrack system, (cont'd.)
fine baseline data, A-21, A-22

functional description, A-14
preprocessing description, A-17

: processor considerations, A-27
time adjustment and zenith calibration, A-22, A-23, A-24 #

Model parameters, uncertain, 8-18
Multistep integration methods, 6-1

• Near real-time operation, 2-19
/ Newton-Raphson iteration, 5-41

Newtonian interpolation, 6-5
Nonspherical gravitational effects, (4.3) 4-9 through 4-18, 2-17

associated partial derivatives, (4.3.2) 4-14 through 4-18
perturbation model, (4.3.1) 4-9 through 4-14

Normal matrix, 8-3, 8-14, 8-59
Numerical integration methods, (Chapter 6)

_ corrector-only, 6-9 throuvh 6-14
: multistep methods, 6-1 through 6-16

_ predict-pseudo-correct, 6-7 through 6-9' r

predictor-corrector, 6-2 through 6-6 ...-_
Runge-Kutta, 6-16 through 6-18

_ starting procedures, 6-19 through 6-22
Numerical stability, 5-2, 5-3, 6-2, 6-7, 6-9
Nutation, 3-12, 3-14, 3-15

Obliquity of the ecliptic, 3-12, 3-14, 3-15
Observation equation, nonlinear, 8-14
Observation _n_clc!, GTDS: 7-2

'_ Observationmodels, (Chapter7)
additional corrections, (7.7) 7-76, 7-77

. atmospheric effects, (7.6) 7-43 through 7-75
\ estimation model, (7.8) 7-77 through 7-79

gener_ description of, (7.1) 7-1 through 7-4
ground-based tracker models, (7.2) 7-4 through 7-1_
radar altimeter model, (7.4) 7-34 through 7-41
,_atellite-to-satellite tracking model, (7.3) 7-18 tbrou_h 7-41
Very Long Baseline Interferometer, (7.5) 7-4!, 7-42

Obser_ration noise, 8-1, 8-4, 8-41, (see also mew3urement noise)
Observation pertial derivatives, (8.2.2) 8-12

with respect to consider variables, 8-15
with respect to solve-for variables, 8-14

Observation vector, linearized, 8-2

1-10
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_ Observational model parameters, 7-2

_ Optimal linear gain, derivation of, (E. 2) E-3 ,iOrbit estimation problem, 8-1, 8-27 _i
Orbit generation methods, (Chapter 5) "_

_'.,eraged equinoctial, (5.8.3) 5-40 iil
averaged Keplerian, (5.8.4) 5-40
Brouwer, (5.9) 5-42 through 5-50

_ Brouwer-Lyddane, (5.10) 5-51 through 5-57

_, Chebyshev-Picard, (5.6) 5.-26 through 5-29
. _ Cowell, (5.2) 5-8

Cowell, time regularized, (5.3) 5-9
Delaunay-Similar, (5.5) 5-16 through 5-26

_ Intermediate Orbit, (5.11) 5-58
Kustaanheimo-Stiefel, (5.4) 5-10 through 5-15
Vinti, (5.12)5-59, 5-60
VOP - equinoctial, (5.7.2) 5-33

_ VOP - Keplerian, (5.7.1) 5-31, 5-32 :
VOP - rectangular, (5.7.3) 5-34 through 5-36 i_

Orbit generators, characteristics of, (Table 5-1) 5-6, (Table 5-2) 5-7

Orbital equations of motion, (Chapter 5) /_
Origin of coordinates, 3-2 _ _

Overview of GTDS, (Chapter 2)

J "f

Partial derivatives, !.

of acceleration due to nonspherical gravitational effects, (4.3.2) 4-14
through 4-32

of acceleration due to attitude-control effect, (4.7.2) 4-66 !
of acceleration due to nonspherical gravitational effects, (4.3.2) 4-14

through 4-18 _

of acceleration due to point mass effects, (4.2.2) 4-8 ! _
of acceleration due to solar radiation pressure, (4.6.2) 4-63

_ analytic, (4.10) 4-75 through 4-86 "
of atmc_spheric density,

Harris-Priester model, (4.5.7) 4-53 through 4-59
" Jacchia-Roberts r,lodel, (4.5.5) 4-50 through 4-53
! cf Cartesian state with respect to DODS variables, 4-80 through 4-83

of Doppler measurement, 7-30 through 7-34
of expected range, 7-15
of geodetic coordinates with respect to body-fixed coordinates, 3-47
of gimbal angles, 7-7 through 7-10 !
of indirect oblateness effects, 4-20, 4-21

Keplerian to Cartesian, (3.3.8.2) 3-53
of Keplerian with respect to C_rtesian, 3-58
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Partial derivatives, (cont'd.) I

_ mapping of, (6.5) 6-15
of Minitrack direction cosines, 7-11

_ of nonspherical potential with respect to r, _, and k, 4-10
of observation measurements, 7-4
of observation measurements in local tangent coordinates, 7-6

I

of radar altimeter observations, 7-49, 7-41
of range observation, 7-25 through 7-27
of range rate (average), ';-18
of range rate (i_s_antaneous method), 7-17

;. of range rate (iterative method), 7-16
of USB expected range, 7-14 _:
of VLBI measurements, 7-42

: Perturbation methods,
general, 5-1
special, 5-1

4
: . _ Perturbation models, (Chapter 4)
: _ aerodynamic and atmospheric models, (4.5) 4-22 througb 4-60

: indirect oblation perturbation model, (4.4) 4-18 through 4-22
model parameters, 4-3 ,,
N-pointmasses model, 4-5 ./

nonspheric_t gravitational effects, (4.3) 4-9 through 4-18
point mass effects, (4.2) 4-4 through 4-8 I i

total perturbation model, (4.1) 4-2 through 4-4
Perturbing accelerations, (Chapter 4)

aerodynamic force effects, (4.5) 4-22
analytic partial derivatives, (4.10) 4-75 t

atmospheric effects, (4.5) 4-22
attitude control effects, (4.7) 4-64 ,_

earth-moon indirect oblation effects, (4.4) 4-18
nonspherical gravitational effects, (4.3) 4-9 i

{

point mass effects, (4.2) 4-4 :,
%

replacement acceleration, (4.9) 4-73
solar radiation pressure, (4.6) 4-60
thrust effects, (4.8) 4-66

Picard iteration method, (5.6) 5-26
Pomcare variables, 5-4, 5-59

Point mass effects, (4.2) 4-4 through 4-8
associated partial derivatives, (4.2.2) 4-8
N-point masses perturbation m_lel, (4.2.1) 4--5 through 4-8 ,' '

Poisson's equation, 4-9

Polar motion, 3-18, 3-20, 3-21, 3-22, 3-23, 3-24 :
Polar motion coefficients, (Table 3-1) 3-25

1-12 '_ :
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: i

Postflight processing, 2-19 "
' Precession, 3-12 _

_ Predictor-corrector integration methods, 6-1, 6-2, 6-7 <
J Predietor-pseudo-corrector methods, (6.2) 6-7 _

Preproccssing, (Appendix A)A-l, 7-1, A-4, A-5, A-6, A-8, A-10, A-17,

-_ A-18, A-19, A-27, A-29, A-30 j I_
_'_ Preprocessor/processor interfaces, A-l, A-5, A-17, A-18 _
i Prime Meridian, 3-2 '_

Greenwich, 3-2

: lunar, 3-2 _
Principal ,_irections, 3-3
Probabiliti,_s,

hyperellipse, (8.5.2) 8-51, (Table 8-1) 8-53
hyperrectangle, (8.5.3) 8-54, (Table 8-2) 8-55

" Probability deasity function, 8-51 _,

Proper time, C-6, C-7, C-10

', Radar altimeter model, (7.4) 7-34 through 7-41
•_ measurement equation, (7.4.2) 7-38 through 7-40 _,

partial derivatives, (7.4.3) 7-40, 7-41 _
surface model, (7.4.1) 7-34 through 7-38 _._/"

• . Radar altimeter system, A-29, A-30 i
; _ L Range (GRARR, ATSR, USB, and C-Bsnd), 7-11 through 7-15

instantaneous meth_xi, 7-14
iterative method, 7-12 through 7-14 _.

1! Range ambiguity, A-3, A-6, A-11, A-33
Rango and Angles method, early orbit, (9.2)9-24, 2-14 _

• Range difference, C-10 "_

Range observation, (7.3.3) 7-21 through 7-27 '
. Range rate (GRARR, ATSR, USB), 7-15 thrcugh 7-18

• j

" '. average range rate, 7-17, 7-18
\ instantaneous range differene_ method, 7-17

iterative range difference method, 7-16 •
: Range-rate formulas, (Appendix C) C-I _

Range sum calculation, 7-24, 7-25
Range sum measurement, 7-19

' Re_d-time operation, near, 2-19
Reference ellipsoid, 7-35 through 7-38 ._:

Reference planes, 3-2 e.
Reference trajectory, 8-32, 8-33 '

Reference trajectory, a prior_, 8-23 i'
Refraction (see atmospheric effects) ,
Refraction difference vectors, C-3
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_' Refraction effects, C-3, C-6, C-8, C-11, C-13, C-14
Regressionequation,nonlinear,_.-i,8-7 •

"_ Regularization, (6.10)6-22, 5-4, 5-10
Relativistic Doppler frequency shift, C-3, C-4, C-5, C-6, C-11, C-.14
Relativistic signal propagation, _Appendix C) C-1 _;

Replacement acceleration, (4.9) 4-73 through 4-75, 2-18
acceleration model, (4.9.1) 4-73 i

partial derivatives, (4.9.2) 4-74, 4-75
Residual error, predicted measurement, 8-32
Residual u_certatnty, predicted measurement, 8-32
Runge-Kutta integration method, (6.6) 6-16, 6-1

starter for multi-step integraticn methods, 6-20

SateUite-to-sateHite tracking (SST) model, (7.3) 7-18 through 7-34
Satellite-to-satellite tracking (SST) system, A-30 through A-33, C-14
Schur identity, 8-57
Sensor systems (see trajectory sensor systems)

_ Solar/Lunar/Planetary File, 3-17
Solar radiation pressure, (4.6) 4-60 through 4-63, 2-18

partial derivatives, (4. _.2) 4-63 j_
i _"=! perturbation mcxiel, (4.6.1) 4-60 through 4-63 _/

Solve-for variable_, 2-13

a priori values, 8-6, 8-7, 8-24 [
• best estim_,te of, 8-8

$

_ Solve-for vector, 8-6, 8-12, 8-13, 8-27, 8-32
Spacecraft dynamics, (2.3) 2-17, 2-18
Space-time matrix, C-1 through C-3
Special pe_urbations method, 2-6, 5-1, 5-2, 5-3, 5-4
Stability,

dynamic, 5-5, 5-]0
numerical, 5-2, 5-3

\ Standarddeviations,a priori,D-I, D-2
_" Start_.ngprocedures, (6.7)6-19, 6-20 ,

Statecorrectionvector,E-I ,
State noise, 8-31, 8-32, 8-40, 8-42 '

State transition mztrlx, 2-18, 4-1, 6-15, 6-16, 8-35
_ugmented, 8-44

_ elements, 4-72 through 4-81
• State vector,

augmented, 8-38, 8-43, 6-50
' expanded, 8-15

Statistical _daptive filtering, (8.4.3) 8-42
Statistics, weighted least squares and filter, (8.6.4) 8-61

confidence interval for group mean, 8-63

t

1-14 "
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Statistics, weight.'d _ast E ,.,a_ _s _Jd f_.lter, (cont'd.)
group me_,, 8-_2
observationresidualgroups, 8-63 *
rootmean squar_error: 8-62 ,_
sample standarddeviation,8-63

_6 _, I _sum of squares aboutmea_, _- _
Stepsizeregulation,2-8, 5-5, 5-10, 6-1, 6-2, 6-21, 6-22

St_rmer-Cowellintegrationformulas, 5-8, 5-9, 6-1, 6-6

System capabilities,(seeGTDS system capabilities)

Thrust effects,(4.8)4-66 through4-72, 2-18

acceleration model, (4.8.1) 4-67 through 4-69
partial derivatives, (4, 8.2) 4-69 through 4-72

Time,
coordinate,C-6, C-8, C-9, C-10 C-!2 _'
proper, C-6, C-7, C-10

Time correlationcoefficients,8-38

Time dependencyo! solve-forand considervariables,8-1z
Time differencecoefficients,(Table3-2)3-74

Time element, 5-10, 5-11 /,
Time regularization,(6.10)6-22,2-9, 2-18 .>I

Time regularizedCoweiimethod, (5.._)5-9, 2-9, 5-3, 5-5, 6-1, 6-20

i Time systems, (3.4) 3-66_ atomic time, A. 1, (3.4.3) 3-67

ephemeris time, ET, (3.4.I)3-67 :

il station time, ST, (3.4.8) 3-71-. transformationbetween, (3.5)3-71 (
uncorrected un_Tersal time, UT0. (3.4.4) 3-69 _

_ universal time, u'r, (3.4.3) 3-67 i :'

universal time, UT1, (3.4.5) 3-69 !_ -_
i universal time UT2 (3.4.6) 3-70| t

-_ universaltime coordinated,UTC, (3.4.7)3-70

_, Time tag, A-2, A-4, A-9, A-11, A-17, A-20, A-21, A-30, A-31, A-32_.
ii Timewise propagationof estimate,covariancematrix, 8-17 _: ,
!_; Tracker models, ground based, (7.2) 7-4 through 7-17 ,_ ,

Tracking modes, 7-19
coherentmode, 7-19

!i crystalmode, 7-19
phase-lockedmode, 7-19

Tracking process, (7.2.1) 7-4

_ Tracking stations,
_ ATSR, A-2
!', C-Band, A-9 _,}

1-15 _'
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Tracking stations, (conl'd.)
; GRARR, A-2, A-8 J_

Minitrack,A-i4
, USB, A-10

?-:.ackingsystem datatypes,7-1, 7-2 !,, _:

_ 'frajectoD"sensor systems, (AppendixA) A-I i .:
'_ ATSR, A-I throughA-8 >

;_ C-Band radar,A-9, A-J0 4'
GRARR, A-I throughA-8 _,

" Minitrack,A-14 throughA-27
i radar sit,meter, A-29, A-30 7
._... satellite-to-satellite,A-30 throughA -33 _,

<, USB, A-10 through A-13 ,.
VLBI, A-27 through A-29

Transformations, ::
i_ from Brouwer mean elementstooscui_ItingKepler,an elements, (5.9 2)

ii 5-46, (5.10.2) 5-52 _
from C-Band, GRARR, and USB data vectors to local tangent coordinates, "

9-24 _'

_: from Cartesian position and velocity t:_ DS eleraents, (5.5.2) 5-20 i#_.
' from Cartesian position anJ velocity to KS elemp.nts, (5.4.2) 5-13 '-_

from DS elements to Co._'_ian posRion and velocity, (5.5.3) 5-25 _
from KS parametrtc variables to Carte3ian position and velocity, (5.4.3) _ :

". i
: 5-15

+,

from osculating orbital elements to averaged elements, (5.8.5) 5-40
from osc,:lating orbitvl elements to Brouwer mean elements, (5.9.1) 5-45,

(_. 10.1) 5-52
from topocentric glmbal angles to inertial coord[t]ates, (9.1.1) 9-2 _

Transformations betweer_ time systems, (3. _) 3-71, 3-72 _'

' by standard formulg, (3.5. i)3-71 _ ._
by time polyaomial_:_, (3.5.2) 3-72 _

"<\ Transponder delay correction, (7.7.3) 7-77 _:
"- Troposphere model (7 6.1) 7-43, 7-44 _"

t UnifiedS-Band (USB)£'_stem,A-10 throughA-13, C-10, C-ll _I
earlyorbitdata, 9-24

functionala¢scril)tion,A-10, A-11, A-lZ

preprocessing description, A-13 , .
Uniformization, 5-2, 5-3, 5-5, 5.0, 5-16 [_r

$

: Variance, D-1 ?
Variance estimatiow, 8-26 __

s Variance for each c,bservution, 8-5, 8-30 -'-

I-!6
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t. w Variation of estimator with resFect to consider parameters, 8-25
Variation of parameters formulations, 2-8, 4-7, 5-2, 5-4, 5-11, 5-16, 5--17,

5-20. 5-31, 5-38, 5-58, 6-1, 6-9
i Variation of qtate with respect to consider dynamic parameters, 8-25

Variation of transformed state with respect to consider variables, 8-26
Variational equat_.ons, (Chapter 4)4-1, 4-3, 4-4, 6-2, 6-11, 6-12, 6-14, 6-20,

8-14, 8-24
regularized, 6-24

" Vehicle-fixed to body-censer'e2 true of date transformations, (3.. 3.12) 3-65
' " Vermd equinox, 3-3

Very Long Baseline Interferometer (VLBJ_ model, (7.5) 7-41, 7-42
Ve_, Long Baseline Interferometer (VLBI) System, A-27 through A-29
Vinti theory, (5.12) 5-59

: Von Zeipel method, 5-2, 5-42

.; _ Weighting factors, dynamic, D-l, D-2
/ _ Weigh','ng matrix, 8-2 8-4, 8-14, 8-63

Weighting, observation, D-1

.I,, 1-17
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